精英家教網 > 高中數學 > 題目詳情

【題目】設某大學的女生體重y(單位:kg)與身高x(單位:cm)具有線性相關關系,根據一組樣本數據(xi,yi)(i=1,2,…,n),用最小二乘法建立的回歸方程為=0.85x-85.71,則下列結論中不正確的是( )

A. yx具有正的線性相關關系

B. 若給變量x一個值,由回歸直線方程=0.85x-85.71得到一個,則為該統(tǒng)計量中的估計值

C. 若該大學某女生身高增加1 cm,則其體重約增加0.85 kg

D. 若該大學某女生身高為170 cm,則可斷定其體重必為58.79 kg

【答案】D

【解析】試題分析:由已知回歸方程為0.85x85.71,可知0.85>0,yx具有正的線性相關關系,回歸直線方程過(, ),若該大學某女生身高為170 cm,則可推斷其體重約為58.79kg,都正確;D錯誤;若該大學某女生身高增加1cm,則可推斷其體重增加0.85kg,應為則其體重約增加0.85kg;

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】△ABC的內角A、B、C的對邊分別為a、b、c.己知asinA+csinC﹣ asinC=bsinB, (Ⅰ)求B;
(Ⅱ)若A=75°,b=2,求a,c.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數

1,討論函數的單調性;

2曲線與直線交于,兩點,其中,若直線斜率為,求證:

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知等差數列{an}滿足a3=7,a5+a7=26.{an}的前n項和為Sn
(1)求an及Sn;
(2)令bn=﹣ (n∈N*),求數列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某品牌手機廠商推出新款的旗艦機型,并在某地區(qū)跟蹤調查得到這款手機上市時間(第x周)和市場占有率(y﹪)的幾組相關數據如下表:

1

2

3

4

5

0.03

0.06

0.1

0.14

0.17

(Ⅰ)根據表中的數據,用最小二乘法求出關于的線性回歸方程;

(Ⅱ)根據上述線性回歸方程,分析該款旗艦機型市場占有率的變化趨勢,并預測在第幾周,該款旗艦機型市場占有率將首次超過 0.40﹪(最后結果精確到整數).

參考公式:,

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】天氣預報說,在今后的三天中,每一天下雨的概率均為50%.現采用隨機模擬試驗的方法估計這三天中恰有兩天下雨的概率:先利用計算器產生0到9之間取整數值的隨機數,用0,1,2,3,4表示下雨,用5,6,7,8,9表示不下雨;再以每三個隨機數作為一組,代表這三天的下雨情況.經隨機模擬試驗產生了如下20組隨機數:

907 966 191 925 271 932 812 458 569 683

431 257 393 027 556 488 730 113 537 989

據此估計,這三天中恰有兩天下雨的概率近似為( 。

A. 0.30 B. 0.35 C. 0.40 D. 0.50

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】將參加數學競賽的1000名學生編號如下:0001,0002,0003,…,1000,打算從中抽取一個容量為50的樣本,按系統(tǒng)抽樣的辦法分成50個部分.如果第一部分編號為0001,0002,…,0020,從中隨機抽取一個號碼為0015,則第40個號碼為

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知M(﹣2,﹣3),N(3,0),直線l過點(﹣1,2)且與線段MN相交,則直線l的斜率k的取值范圍是( 。
A.或k≥5
B.
C.
D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】△ABC的內角A,B,C對邊分別是a,b,c.且SABC=30,cosA=
(1)求 的值;
(2)若c﹣b=1,求a的值.

查看答案和解析>>

同步練習冊答案