某車站有快、慢兩種車,始發(fā)站距終點站7.2km,慢車到終點站需16min,快車比慢車晚發(fā)車3min,且行駛10min后到達(dá)終點站.試分別寫出兩車所行路程關(guān)于慢車行駛時間的函數(shù)關(guān)系式,并回答:兩車在何時相遇?相遇時距始發(fā)站多遠(yuǎn)?
考點:根據(jù)實際問題選擇函數(shù)類型
專題:應(yīng)用題,函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)快、慢兩種車,始發(fā)站距終點站7.2km,慢車到終點站需16min,快車比慢車晚發(fā)車3min,且行駛10min后到達(dá)終點站,即可寫出兩車所行路程關(guān)于慢車行駛時間的函數(shù)關(guān)系式,利用y1=y2,可得兩車在慢車出發(fā)8min時相遇,相遇時距始發(fā)站3.6km.
解答: 解:慢車所行路程y1與時間x的函數(shù)關(guān)系式為y1=0.45x(0<x≤16),快車所行路程y2與慢車行駛時間x的函數(shù)關(guān)系式為y2=
0,0<x≤3
0.72x-3,3<x≤13
7.2,13<x≤16
,
設(shè)兩車在慢車出發(fā)xmin時相遇,則y1=y2,即0.45x=0.72(x-3),解得x=8,此時y1=y2=3.6.
即兩車在慢車出發(fā)8min時相遇,相遇時距始發(fā)站3.6km.
點評:本題考查根據(jù)實際問題選擇函數(shù)類型,考查學(xué)生的計算能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=lnx-
3
x
的零點所在的區(qū)間是( 。
A、(1,2)
B、(1,e)
C、(e,3)
D、(e,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(文做)已知函數(shù)f(x)=
cx,(0<x<c)
2-
1
x2
+1,(c≤x<1)
,滿足f(c2)=
1
8

(1)求常數(shù)c的值
(2)解不等式f(x)>
2
8
+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在一段時間內(nèi),分5次測得某種商品的價格x(萬元)和需求量y(t)之間的一組數(shù)據(jù)為:
12345
價格x1.41.61.822.2
需求量y1210753
已知
5
i=1
xiyi=62,
5
i=1
x
2
i
=16.6.
(1)畫出散點圖;
(2)求出y對x的線性回歸方程;
(3)如果價格定為1.9萬元,預(yù)測需求量大約是多少?(精確到0.01t).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

從學(xué)號為1號至50號的高一某班50名學(xué)生中隨機選取5名同學(xué)參加數(shù)學(xué)測試,采用系統(tǒng)抽樣的方法,則所選5名學(xué)生的學(xué)號可能是(  )
A、1,2,3,4,5
B、6,16,26,36,46
C、2,4,6,8,10
D、4,13,22,31,40

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=kax-a-x(a>0且a≠1)是定義域為R的奇函數(shù);
(1)若f(1)>0,判斷f(x)的單調(diào)性并求不等式f(x+2)+f(x-4)>0的解集;
(2)若f(1)=
3
2
,且g(x)=a2x+a-2x-4f(x),求g(x)在[1,+∞)上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x+
1
x
=2,那么x16+
1
x16
的值為( 。
A、16B、8C、4D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計算[(
3-5
2] 
3
4
的結(jié)果是( 。
A、5
B、-5
C、
5
D、-
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

tan1815°=( 。
A、
6
-
2
4
B、
6
+
2
4
C、2-
3
D、2+
3

查看答案和解析>>

同步練習(xí)冊答案