若P=,Q= (a≥0),則P,Q的大小關系(  )

A.P>Q B.P=Q

C.P<Q D.由a取值決定

 

C

【解析】假設P<Q,∵要證P<Q,只要證P2<Q2,

只要證:2a+7+2<2a+7+2,

只要證:a2+7a<a2+7a+12,

只要證:0<12,

∵0<12成立,∴P<Q成立.

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源:2015高考數(shù)學(理)一輪配套特訓:7-4直線、平面平行的判定及性質(解析版) 題型:選擇題

在正方體ABCD-A1B1C1D1中,點M,N分別在線段AB1,BC1上,且AM=BN.以下結論:①AA1⊥MN;②A1C1∥MN;③MN∥平面A1B1C1D1;④MN與A1C1異面,其中有可能成立的個數(shù)為(  )

A.4 B.3 C.2 D.1

 

查看答案和解析>>

科目:高中數(shù)學 來源:2015高考數(shù)學(理)一輪配套特訓:7-2空間幾何體的表面積和體積(解析版) 題型:選擇題

一個幾何體的三視圖如圖所示,其中俯視圖與側視圖均為半徑是2的圓,則這個幾何體的表面積是(  )

A.16π B.14π C.12π D.8π

 

查看答案和解析>>

科目:高中數(shù)學 來源:2015高考數(shù)學(理)一輪配套特訓:6-6直接證明與間接證明(解析版) 題型:選擇題

若a,b∈R,則下面四個式子中恒成立的是(  )

A.lg(1+a2)>0 B.a2+b2≥2(a-b-1)

C.a2+3ab>2b2 D. <

 

查看答案和解析>>

科目:高中數(shù)學 來源:2015高考數(shù)學(理)一輪配套特訓:6-6直接證明與間接證明(解析版) 題型:選擇題

用反證法證明某命題時,對結論:“自然數(shù)a,b,c中恰有一個偶數(shù)”正確的反設為(  )

A.a,b,c中至少有兩個偶數(shù)

B.a,b,c中至少有兩個偶數(shù)或都是奇數(shù)

C.a,b,c都是奇數(shù)

D.a,b,c都是偶數(shù)

 

查看答案和解析>>

科目:高中數(shù)學 來源:2015高考數(shù)學(理)一輪配套特訓:6-5合情推理與演繹推理(解析版) 題型:解答題

在銳角三角形ABC中,求證:sinA+sinB+sinC>cosA+cosB+cosC.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2015高考數(shù)學(理)一輪配套特訓:6-5合情推理與演繹推理(解析版) 題型:選擇題

三段論推理“①矩形是平行四邊形;②三角形不是平行四邊形;③三角形不是矩形”中的小前提是(  )

A.① B.② C.③ D.①和②

 

查看答案和解析>>

科目:高中數(shù)學 來源:2015高考數(shù)學(理)一輪配套特訓:6-2一元二次不等式及其解法(解析版) 題型:解答題

已知不等式ax2+bx+c>0的解集為(1,t),記函數(shù)f(x)=ax2+(a-b)x-c.

(1)求證:函數(shù)y=f(x)必有兩個不同的零點;

(2)若函數(shù)y=f(x)的兩個零點分別為m,n,求|m-n|的取值范圍;

(3)是否存在這樣的實數(shù)a,b,c及t使得函數(shù)y=f(x)在[-2,1]上的值域為[-6,12]?若存在,求出t的值及函數(shù)y=f(x)的解析式;若不存在,請說明理由.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2015高考數(shù)學(理)一輪配套特訓:5-5數(shù)列的綜合應用(解析版) 題型:選擇題

已知等差數(shù)列{an}的前n項和為Sn,S4=40,Sn=210,Sn-4=130,則n=(  )

A.12 B.14 C.16 D.18

 

查看答案和解析>>

同步練習冊答案