已知點A(0,6),圓C:x2+y2+10x+10y=0.
(1)求過點A且與圓C相切于原點O的圓C1的方程;
(2)求直線被圓C1所截得的弦長.
【答案】分析:(1)把圓的方程化為標準方程,找出圓心C的坐標,由所求圓與圓C相切與原點,得到兩圓心與原點三點共線,由C和原點的坐標確定出三點共線的直線方程,得到所求圓的圓心在此直線上,由線段OA為所求圓中的弦,根據(jù)垂徑定理得到圓心一定在弦AO的垂直平分線上,找出線段AO的垂直平分線,聯(lián)立兩直線方程得出方程組,求出方程組的解得到圓心的坐標,進而利用兩點間的距離公式求出圓的半徑,由圓心和半徑寫出圓的標準方程即可;
(2)由第一問求出的圓的方程得到圓心坐標和半徑,利用點到直線的距離公式求出圓心到已知直線的距離即為弦心距,再由圓的半徑,利用勾股定理求出弦長得一半,即可求出直線被圓所截得的弦長.
解答:( 本題滿分(14分) )
解:(1)由x2+y2+10x+10y=0,得(x+5)2+(y+5)2=50,
所以圓C的圓心坐標(-5,-5),
而圓C1的圓心C1與圓心M、原點O共線,
故圓心C1在直線y=x上,又圓C1同時經(jīng)過點O與點A(0,6),
所以圓心C1又在直線y=3上,則有:,
解得:,即圓心C1的坐標為(3,3),
又|OC1|==3,即半徑,
故所求圓C1的方程為(x-3)2+(y-3)2=18;

(2)∵圓心C1到直線的距離,
故所求的弦長為:
點評:此題考查了直線與圓相交的性質(zhì),涉及的知識有圓的標準方程,垂徑定理,勾股定理,點到直線的距離公式,遇到直線與圓相交時,常常根據(jù)垂徑定理作出所截得弦的弦心距,由弦長的一半,圓的半徑及弦心距構(gòu)造直角三角形,利用勾股定理來解決問題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知點A(-1,6)和B(3,0),在直線AB上求一點P,使|
AP
|=
1
3
|
AB
|.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點A(0,0),B(-4,0),C(0,6),則△ABC外接圓的方程
(x+2)2+(y-3)2=13
(x+2)2+(y-3)2=13

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點A(0,6),圓C:x2+y2+10x+10y=0.
(1)求過點A且與圓C相切于原點O的圓C1的方程;
(2)求直線2x+3y+
26
-15=0
被圓C1所截得的弦長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點A(4,6),B(-2,4),則直線AB的方程為
x-3y+14=0
x-3y+14=0

查看答案和解析>>

同步練習冊答案