已知,若,則a的值等于 (    )

A.              B.              C.              D.

 

【答案】

B

【解析】

試題分析:

考點(diǎn):函數(shù)導(dǎo)數(shù)

點(diǎn)評(píng):常用函數(shù)求導(dǎo)公式要熟記:

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)拋物線C:y2=2px(p>0)的焦點(diǎn)為F,準(zhǔn)線為l,A為C上一點(diǎn),已知以F為圓心,F(xiàn)A為半徑的圓F交l于B,D兩點(diǎn),若△BDF為等邊三角形,△ABD的面積為6,則p的值為
3
3
,圓F的方程為
(x-
3
2
)2+y2=12
(x-
3
2
)2+y2=12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知離散型隨機(jī)變量X等可能取值1,2,3,…,n,若P(1≤X≤3)=,則n的值為

A.3                   B.5                   C.10                  D.15

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本題滿分18分)本題共有3個(gè)小題,第1小題滿分4分,第2小題滿分6分,第3小題滿分8分.

已知點(diǎn)是直角坐標(biāo)平面內(nèi)的動(dòng)點(diǎn),點(diǎn)到直線的距離為,到點(diǎn)的距離為,且.

(1)求動(dòng)點(diǎn)P所在曲線C的方程;

(2)直線過點(diǎn)F且與曲線C交于不同兩點(diǎn)AB(點(diǎn)AB不在x軸上),分別過A、B點(diǎn)作直線的垂線,對(duì)應(yīng)的垂足分別為,試判斷點(diǎn)F與以線段為直徑的圓的位置關(guān)系(指在圓內(nèi)、圓上、圓外等情況);

(3)記,,(AB、是(2)中的點(diǎn)),問是否存在實(shí)數(shù),使成立.若存在,求出的值;若不存在,請(qǐng)說明理由.

進(jìn)一步思考問題:若上述問題中直線、點(diǎn)、曲線C:,則使等式成立的的值仍保持不變.請(qǐng)給出你的判斷            (填寫“不正確”或“正確”)(限于時(shí)間,這里不需要舉反例,或證明).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇省南通市啟東中學(xué)高一(上)期中數(shù)學(xué)試卷(解析版) 題型:解答題

若函數(shù)f(x)為定義域D上單調(diào)函數(shù),且存在區(qū)間[a,b]⊆D(其中a<b),使得當(dāng)x∈[a,b]時(shí),f(x)的取值范圍恰為[a,b],則稱函數(shù)f(x)是D上的正函數(shù),區(qū)間[a,b]叫做等域區(qū)間.
(1)已知是[0,+∞)上的正函數(shù),求f(x)的等域區(qū)間;
(2)試探究是否存在實(shí)數(shù)m,使得函數(shù)g(x)=x2+m是(-∞,0)上的正函數(shù)?若存在,請(qǐng)求出實(shí)數(shù)m的取值范圍;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年山東省濟(jì)寧市汶上一中高一(上)期中數(shù)學(xué)試卷(解析版) 題型:解答題

若函數(shù)f(x)為定義域D上單調(diào)函數(shù),且存在區(qū)間[a,b]⊆D(其中a<b),使得當(dāng)x∈[a,b]時(shí),f(x)的取值范圍恰為[a,b],則稱函數(shù)f(x)是D上的正函數(shù),區(qū)間[a,b]叫做等域區(qū)間.
(1)已知是[0,+∞)上的正函數(shù),求f(x)的等域區(qū)間;
(2)試探究是否存在實(shí)數(shù)m,使得函數(shù)g(x)=x2+m是(-∞,0)上的正函數(shù)?若存在,請(qǐng)求出實(shí)數(shù)m的取值范圍;若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案