已知函數(shù),.
(1)若,判斷函數(shù)的奇偶性,并加以證明;
(2)若函數(shù)在上是增函數(shù),求實數(shù)的取值范圍;
(3)若存在實數(shù)使得關(guān)于的方程有三個不相等的實數(shù)根,求實數(shù)的取值范圍.
(1)奇函數(shù),(2),(3)
解析試題分析:(1)函數(shù)奇偶性的判定,一要判定定義域是否關(guān)于原點對稱,二要判定與是否相等或相反,(2)函數(shù) 是分段函數(shù),每一段都是二次函數(shù)的一部分,因此研究 單調(diào)性,必須研究它們的對稱軸,從圖像可觀察得到實數(shù) 滿足的條件: ,(3)研究方程根的個數(shù),通常從圖像上研究,結(jié)合(2)可研究出函數(shù)圖像.分三種情況研究,一是上單調(diào)增函數(shù),二是先在上單調(diào)增,后在上單調(diào)減,再在上單調(diào)增,三是先在上單調(diào)增,后在上單調(diào)減,再在上單調(diào)增.
試題解析:(1)函數(shù)為奇函數(shù).[來
當(dāng)時,,,∴
∴函數(shù)為奇函數(shù); 3分
(2),當(dāng)時,的對稱軸為:;
當(dāng)時,的對稱軸為:;∴當(dāng)時,在R上是增函數(shù),即時,函數(shù)在上是增函數(shù); 7分
(3)方程的解即為方程的解.
①當(dāng)時,函數(shù)在上是增函數(shù),∴關(guān)于的方程不可能有三個不相等的實數(shù)根; 9分
②當(dāng)時,即,∴在上單調(diào)增,在上單調(diào)減,在上單調(diào)增,∴當(dāng)時,關(guān)于的方程有三個不相等的實數(shù)根;即,∵∴.
設(shè),∵存在使得關(guān)于的方程有三個不相等的實數(shù)根, ∴,又可證在上單調(diào)增
∴∴; 12分
③當(dāng)時,即,∴
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)是定義在R上的偶函數(shù),且x≥0時,.
(1)求f(-1)的值;
(2)求函數(shù)f(x)的值域A;
(3)設(shè)函數(shù)的定義域為集合B,若AÍB,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)().
(1)證明:當(dāng)時,在上是減函數(shù),在上是增函數(shù),并寫出當(dāng)時的單調(diào)區(qū)間;
(2)已知函數(shù),函數(shù),若對任意,總存在,使得成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
定義在上的函數(shù),如果滿足:對任意,存在常數(shù),都有 成立,則稱是上的有界函數(shù),其中稱為函數(shù)的一個上界.
已知函數(shù),.
(1)若函數(shù)為奇函數(shù),求實數(shù)的值;
(2)在(1)的條件下,求函數(shù)在區(qū)間上的所有上界構(gòu)成的集合;
(3)若函數(shù)在上是以3為上界的有界函數(shù),求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)是偶函數(shù).
(1)求實數(shù)的值;
(2)設(shè)函數(shù),若函數(shù)與的圖象有且只有一個公共點,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)定義域為的函數(shù)
(Ⅰ)在平面直角坐標(biāo)系內(nèi)作出函數(shù)的圖象,并指出的單調(diào)區(qū)間(不需證明);
(Ⅱ)若方程有兩個解,求出的取值范圍(只需簡單說明,不需嚴格證明).
(Ⅲ)設(shè)定義為的函數(shù)為奇函數(shù),且當(dāng)時,求的解析式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知.
(Ⅰ)當(dāng)時,判斷的奇偶性,并說明理由;
(Ⅱ)當(dāng)時,若,求的值;
(Ⅲ)若,且對任何不等式恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com