已知函數(shù)f(x)=
2x     x≤0   
x-1   x>0   
f(a)=
1
2
,則實(shí)數(shù)a=
-1或
3
2
-1或
3
2
分析:根據(jù)函數(shù)f(x)=
2x     x≤0   
x-1   x>0   
f(a)=
1
2
,可知:若a<0,則f(a)=2a=
1
2
=2-1,若a>0,則f(a)=a-1=
1
2
,由此能求出a.
解答:解:∵函數(shù)f(x)=
2x     x≤0   
x-1   x>0   
,f(a)=
1
2

∴若a<0,則f(a)=2a=
1
2
=2-1,
∴a=-1.
若a>0,則f(a)=a-1=
1
2
,
∴a=
3
2

故答案為:-1或
3
2
點(diǎn)評(píng):本題考查有理數(shù)指數(shù)冪的化簡(jiǎn)求值,是基礎(chǔ)題,易錯(cuò)點(diǎn)是不分類直接求解,導(dǎo)致丟解.解題時(shí)要認(rèn)真審題,注意合理地進(jìn)行分類.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
2-xx+1
;
(1)求出函數(shù)f(x)的對(duì)稱中心;
(2)證明:函數(shù)f(x)在(-1,+∞)上為減函數(shù);
(3)是否存在負(fù)數(shù)x0,使得f(x0)=3x0成立,若存在求出x0;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
2-x-1,x≤0
x
,x>0
,則f[f(-2)]=
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2(sin2x+
3
2
)cosx-sin3x

(1)求函數(shù)f(x)的值域和最小正周期;
(2)當(dāng)x∈[0,2π]時(shí),求使f(x)=
3
成立的x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2-
ax+1
(a∈R)
的圖象過點(diǎn)(4,-1)
(1)求a的值;
(2)求證:f(x)在其定義域上有且只有一個(gè)零點(diǎn);
(3)若f(x)+mx>1對(duì)一切的正實(shí)數(shù)x均成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
2-2cosx
+
2-2cos(
3
-x)
,x∈[0,2π],則當(dāng)x=
3
3
時(shí),函數(shù)f(x)有最大值,最大值為
2
3
2
3

查看答案和解析>>

同步練習(xí)冊(cè)答案