函數(shù)在區(qū)間 上單調(diào)遞減( )
A. B.(- C. D.
D
【解析】
試題分析:
,令,
解得,令得函數(shù)在上單調(diào)遞增.
考點(diǎn):本小題主要考查兩角和與差的正弦、余弦公式、輔助角公式的應(yīng)用和由三角函數(shù)圖象考查三角函數(shù)的性質(zhì),考查學(xué)生的運(yùn)算求解能力和數(shù)形結(jié)合分析問題、解決問題的能力.
點(diǎn)評:要考查三角函數(shù)的性質(zhì),必須化成的形式,然后借助三角函數(shù)的圖象解決,還需要注意的是本題的只是所求出的單調(diào)區(qū)間的一部分,并不是完整的一個單調(diào)區(qū)間.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2010-2011年浙江省高二下學(xué)期第二次階段性考試文數(shù) 題型:選擇題
給定函數(shù)①,②,③,④,其中在區(qū)間[0,+)上單調(diào)遞
減的函數(shù)序號是 ( )
A.②④ B.②③ C.③④ D.①④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012年全國普通高等學(xué)校招生統(tǒng)一考試?yán)砜茢?shù)學(xué)(北京卷解析版) 題型:解答題
已知函數(shù),(),
(1)若曲線與曲線在它們的交點(diǎn)(1,c)處具有公共切線,求a,b的值
(2)當(dāng)時,若函數(shù)的單調(diào)區(qū)間,并求其在區(qū)間(-∞,-1)上的最大值。
【解析】(1),
∵曲線與曲線在它們的交點(diǎn)(1,c)處具有公共切線
∴,
∴
(2)令,當(dāng)時,
令,得
時,的情況如下:
x |
|||||
+ |
0 |
- |
0 |
+ |
|
|
|
所以函數(shù)的單調(diào)遞增區(qū)間為,,單調(diào)遞減區(qū)間為
當(dāng),即時,函數(shù)在區(qū)間上單調(diào)遞增,在區(qū)間上的最大值為,
當(dāng)且,即時,函數(shù)在區(qū)間內(nèi)單調(diào)遞增,在區(qū)間上單調(diào)遞減,在區(qū)間上的最大值為
當(dāng),即a>6時,函數(shù)在區(qū)間內(nèi)單調(diào)遞贈,在區(qū)間內(nèi)單調(diào)遞減,在區(qū)間上單調(diào)遞增。又因為
所以在區(qū)間上的最大值為。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分15分)
已知函數(shù)。
⑴求函數(shù)的最小值,并求取得最小值時的值;
⑵將得圖象向右平移個單位后得到函數(shù)的圖象,使得在區(qū)間上單調(diào)遞
增,寫出一個滿足條件的函數(shù)的解析式。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
若函數(shù) (ω>0)在區(qū)間上單調(diào)遞 增,在區(qū)間上單調(diào)遞減,則 ( )
A. B. C. 2 D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分15分)
已知函數(shù)。
⑴求函數(shù)的最小值,并求取得最小值時的值;
⑵將得圖象向右平移個單位后得到函數(shù)的圖象,使得在區(qū)間上單調(diào)遞
增,寫出一個滿足條件的函數(shù)的解析式。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com