【題目】如圖,在三棱錐中, , 底面, ,且.
(1)若為上一點,且,證明:平面平面.
(2)若為棱上一點,且平面,求三棱錐的體積.
【答案】(1)見解析;(2)
【解析】試題分析:(1)由平面可得,又, ,所以平面,根據(jù)面面垂直的判定定理得平面平面。(2)在中,由余弦定理得
,根據(jù)勾股定理可得AB=3,BC=1,PB=2,由平面可得,從而得到,故BD=1.過作,交于,則為三棱錐的高,且由三棱錐的體積公式可得。
試題解析:
(1)證明:∵ 平面, 平面
∴.
又, ,
∴平面.
∵平面,
∴ 平面平面.
(2)解:
在中,由余弦定理得
,
∴,
由條件得 解得
∵平面, 平面,平面平面,
∴,
∴.
過作,交img src="http://thumb.zyjl.cn/questionBank/Upload/2017/12/29/18/b0e15a69/SYS201712291828428337502978_DA/SYS201712291828428337502978_DA.053.png" width="28" height="17" style="-aw-left-pos:0pt; -aw-rel-hpos:column; -aw-rel-vpos:paragraph; -aw-top-pos:0pt; -aw-wrap-type:inline" />于,則為三棱錐的高,則.
∵,
∴ .
即三棱錐的體積為。
科目:高中數(shù)學 來源: 題型:
【題目】學校藝術節(jié)對同一類的,,,四項參賽作品,只評一項一等獎,在評獎揭曉前,甲、乙、丙、丁四位同學對這四項參賽作品預測如下:
甲說:“是或作品獲得一等獎”;
乙說:“作品獲得一等獎”;
丙說:“,兩項作品未獲得一等獎”;
丁說:“是作品獲得一等獎”.
若這四位同學中只有兩位說的話是對的,則獲得一等獎的作品是__________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD所在的半平面和直角梯形CDEF所在的半平面成60°的二面角,DE∥CF,CD⊥DE,AD=2, ,CF=6,∠CFE=45°.
(Ⅰ)求證:BF∥平面ADE;
(Ⅱ)在線段CF上求一點G,使銳二面角B﹣EG﹣D的余弦值為 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)的圖象與軸相切,且切點在軸的正半軸上.
(1)若函數(shù)在上的極小值不大于,求的取值范圍;
(2)設,證明: 在上的最小值為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,A,B兩點5條連線并聯(lián),它們在單位時間內能通過的最大信息量依次為2,3,4,3,2.現(xiàn)記從中任取三條線且在單位時間內都通過的最大信息總量為ξ,則P(ξ≥8)= .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在正四棱錐中,已知異面直線與所成的角為,給出下面三個命題:
:若,則此四棱錐的側面積為;
:若分別為的中點,則平面;
:若都在球的表面上,則球的表面積是四邊形面積的倍.
在下列命題中,為真命題的是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,李先生家住H小區(qū),他工作在C科技園區(qū),從家開車到公司上班路上有L1、L2兩條路線,L1路線上有A1、A2、A3三個路口,各路口遇到紅燈的概率均為 ;L2路線上有B1、B2兩個路口,各路口遇到紅燈的概率依次為 , .
(1)若走L1路線,求最多遇到1次紅燈的概率;
(2)若走L2路線,求遇到紅燈次數(shù)X的數(shù)學期望;
(3)按照“平均遇到紅燈次數(shù)最少”的要求,請你幫助李先生從上述兩條路線中選擇一條最好的上班路線,并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD底面是正方形,PA⊥底面ABCD,E,F(xiàn)分別為PA,PD中點.
(1)求證:EF∥面PBC
(2)求證:平面PBC⊥平面PAB.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com