已知矩陣A=(
 1-1
 
 24
),向量α=(
 74
).
(1)求A的特征值λ1,λ2和對應(yīng)的一個特征向量α1,α2;
(2)計算A5α的值.
(1)矩陣A的特征多項式為f(λ)=
λ-1-2
1λ-4
2-5λ+6=0,
得λ1=2,λ2=3,
當(dāng)λ1=2時,α1=
2 
1 
,當(dāng)λ2=3時,得α2=
1 
1 

(2)由β=mα1+nα2=m
2 
1 
+n
1 
1 
=
7 
4 
,
得:
2m+n=7
m+n=4
解得
m=3
n=1
,則β=3α12
∴A5β=A5(3α12)=3(A5α1)+A5α2=3(
λ51
α1)+
λ52
α2=3×25
2 
1 
+35
1 
1 
=
435 
339 
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知矩陣A=
31
0-1
,求A的特征值λ1,λ2及對應(yīng)的特征向量
a1
,
a2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知矩陣A=
31
0-1
,求A的特征值λ1,λ2及對應(yīng)的特征向量a1,a2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知矩陣A=
3a
0-1
,a∈R
,若點(diǎn)P(2,-3)在矩陣A的變換下得到點(diǎn)P′(3,3).
(1)則求實數(shù)a的值;
(2)求矩陣A的特征值及其對應(yīng)的特征向量.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【選修4-2:矩陣與變換】
已知矩陣A=
2-1
-43
,B=
4-1
-31
,求滿足AX=B的二階陣X.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•南京模擬)A.選修4-1幾何證明選講
如圖,△ABC的外接圓的切線AE與BC的延長線相交于點(diǎn)E,∠BAC的平分線與BC交于點(diǎn)D.
求證:ED2=EB•EC.
B.矩陣與變換
已知矩陣A=
2-1
-43
,
4-1
-31
,求滿足AX=B的二階矩陣X.
C.選修4-4 參數(shù)方程與極坐標(biāo)
若兩條曲線的極坐標(biāo)方程分別為ρ=1與ρ=2cos(θ+
π
3
),它們相交于A,B兩點(diǎn),求線段AB的長.
D.選修4-5 不等式證明選講設(shè)a,b,c為正實數(shù),求證:a3+b3+c3+
1
abc
≥2
3

查看答案和解析>>

同步練習(xí)冊答案