中心在原點(diǎn),焦點(diǎn)在x軸上的一個(gè)橢圓與一個(gè)雙曲線有共同的焦點(diǎn)F1,F(xiàn)2,|F1F2|=2
13
,橢圓的長(zhǎng)半軸與雙曲線實(shí)半軸之差為4,離心率之比為3:7,
(1)求這兩曲線方程;
(2)若P為兩曲線的交點(diǎn)(P在第一象限),求
PF1
PF2
的值.
分析:(1)根據(jù)半焦距c=
13
,設(shè)橢圓長(zhǎng)半軸為a,由離心率之比求出a,進(jìn)而求出橢圓短半軸的長(zhǎng)及雙曲線的虛半軸的長(zhǎng),寫(xiě)出橢圓和雙曲線的標(biāo)準(zhǔn)方程.
(2)由橢圓、雙曲線的定義求出PF1與PF2的長(zhǎng),三角形F1PF2中,利用余弦定理求出 cos∠F1PF2 的值,最后利用向量的數(shù)量積公式求解即可.
解答:解:(1)由題意知,半焦距c=
13
,設(shè)橢圓長(zhǎng)半軸為a,則雙曲線實(shí)半軸 a-4,
離心率之比為
3
7
=
13
a
13
a-4

∴a=7,
∴橢圓的短半軸等于
49-13
=6,雙曲線虛半軸的長(zhǎng)為
13-9
=2,
∴橢圓和雙曲線的方程分別為:
x2
49
+
y2
36
=1
x2
9
-
y2
4
=1

(2)由橢圓的定義得:PF1 +PF2=2a=14,
由雙曲線的定義得:PF1-PF2=6,
∴PF1=10,PF2=4,
又F1F2=2
13
,三角形F1PF2中,利用余弦定理得:(2
13
)
2
=100+16-80cos∠F1PF2,
∴cos∠F1PF2=
4
5

PF1
PF2
=|
PF1
|•|
PF2
|
cos∠F1PF2=10×4×
4
5
=32.
點(diǎn)評(píng):本題主要考查橢圓、雙曲線的標(biāo)準(zhǔn)方程和幾何性質(zhì)、平面向量數(shù)量積的運(yùn)算,考查計(jì)算能力.屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓w的中心在原點(diǎn),焦點(diǎn)在x軸上,長(zhǎng)軸長(zhǎng)為4,離心率為
6
3
,△ABC的頂點(diǎn)A,B在橢圓w上,C在直線l:y=x+2上,且AB∥l.
(1)求橢圓w的方程;
(2)當(dāng)AB邊通過(guò)坐標(biāo)原點(diǎn)O時(shí),求AB的長(zhǎng)及△ABC的面積;
(3)當(dāng)∠ABC=90°,且斜邊AC的長(zhǎng)最大時(shí),求AB所在直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,函數(shù)y=f(x)的圖象是中心在原點(diǎn)、焦點(diǎn)在x軸上的橢圓的兩段弧,則不等式f(x)<f(-x)+x的解集為( 。
A、{x|-
2
<x<0或
2
<x≤2}
B、{x|-2≤x<-
2
2
<x≤2}
C、{x|-2≤x<-
2
2
2
2
<x≤2}
D、{x|-
2
<x<
2
,且x≠0}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,函數(shù)y=f(x)的圖象是中心在原點(diǎn),焦點(diǎn)在x軸上的橢圓的兩段弧,則不等式f(x)<f(-x)+x的解集為(  )
A、{
2
2
<x≤2
2
2
<x≤2
}
B、{x|-2≤x<
2
2
<x≤2}
C、{x|-
2
<x<0
2
<x≤2
}
D、{x|-
2
<x<
2
,且x≠0}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011年山西省孝義市高二第二次月考考試數(shù)學(xué)文卷 題型:解答題

(12分)

    已知橢圓中心在原點(diǎn),焦點(diǎn)在x軸上,長(zhǎng)軸長(zhǎng)等于12,離心率為.

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)過(guò)橢圓左頂點(diǎn)作直線l垂直于x軸,若動(dòng)點(diǎn)M到橢圓右焦點(diǎn)的距離比它到直線l的距離小4,求點(diǎn)M的軌跡方程.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:東城區(qū)模擬 題型:解答題

已知橢圓w的中心在原點(diǎn),焦點(diǎn)在x軸上,長(zhǎng)軸長(zhǎng)為4,離心率為
6
3
,△ABC的頂點(diǎn)A,B在橢圓w上,C在直線l:y=x+2上,且ABl.
(1)求橢圓w的方程;
(2)當(dāng)AB邊通過(guò)坐標(biāo)原點(diǎn)O時(shí),求AB的長(zhǎng)及△ABC的面積;
(3)當(dāng)∠ABC=90°,且斜邊AC的長(zhǎng)最大時(shí),求AB所在直線的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案