設(shè)函數(shù)f (x)=cos(2x+)+sin2x+2a
(1)求函數(shù)f (x)的單調(diào)遞增區(qū)間
(2)當(dāng)0≤x≤時(shí),f (x)的最小值為0,求a的值.
(1),(2)a=-

試題分析:(1)研究三角函數(shù)性質(zhì)首先化為基本三角函數(shù)形式.即. f (x)=cos2x+sin2x+2a=sin(2x+)+2a.再根據(jù)基本三角函數(shù)性質(zhì)列不等關(guān)系:由得f (x)的單調(diào)遞增區(qū)間為(2)由0≤x≤,得,故≤sin(2x+)≤1.由f (x)的最小值為0,得+2a=0.解得a=-
解:(1)f (x)=cos2x+sin2x+2a=sin(2x+)+2a.
,得kp-≤x≤kp+(k∈Z).
所以,f (x)的單調(diào)遞增區(qū)間為
(2)由0≤x≤,得,故≤sin(2x+)≤1.
由f (x)的最小值為0,得+2a=0.解得a=-
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

將函數(shù)的圖象上所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來的2倍(縱坐標(biāo)不變),所得圖象的函數(shù)解析式是(   )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù),是實(shí)數(shù)常數(shù))的圖像上的一個(gè)最高點(diǎn),與該最高點(diǎn)最近的一個(gè)最低點(diǎn)是,
(1)求函數(shù)的解析式及其單調(diào)增區(qū)間;
(2)在銳角三角形△ABC中,角A、B、C所對(duì)的邊分別為,且,角A的取值范圍是區(qū)間M,當(dāng)時(shí),試求函數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知:函數(shù)
(1)求函數(shù)的周期T,與單調(diào)增區(qū)間.
(2)函數(shù)的圖象有幾個(gè)公共交點(diǎn).
(3)設(shè)關(guān)于的函數(shù)的最小值為,試確定滿足的值,并對(duì)此時(shí)的值求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0)的圖象如圖所示.為了得到g(x)=-Acos ωx(A>0,ω>0)的圖象,可以將f(x)的圖象(  )
A.向右平移個(gè)單位長(zhǎng)度
B.向右平移個(gè)單位長(zhǎng)度
C.向左平移個(gè)單位長(zhǎng)度
D.向左平移個(gè)單位長(zhǎng)度

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

要得到函數(shù)的圖象,只需將函數(shù)的圖象上所有的點(diǎn)的(  ).
A.橫坐標(biāo)縮短到原來的倍(縱坐標(biāo)不變),再向左平行移動(dòng)個(gè)單位長(zhǎng)度
B.橫坐標(biāo)縮短到原來的倍(縱坐標(biāo)不變),再向右平行移動(dòng)個(gè)單位長(zhǎng)度
C.橫坐標(biāo)伸長(zhǎng)到原來的2倍(縱坐標(biāo)不變),再向左平行移動(dòng)個(gè)單位長(zhǎng)度
D.橫坐標(biāo)伸長(zhǎng)到原來的2倍(縱坐標(biāo)不變),再向右平行移動(dòng)個(gè)單位長(zhǎng)度

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù),
(l)求函數(shù)的最小正周期;
(2)當(dāng)時(shí),求函數(shù)f(x)的單調(diào)區(qū)間。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

將函數(shù)f(x)=sin(3x+)的圖象向右平移個(gè)單位長(zhǎng)度,得到函數(shù)y=g(x)的圖象,則函數(shù)y=g(x)在[]上的最小值為      

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)函數(shù)f(x)=sin(x+)+cos(x+)(>0,||<)的最小正周期為π,且f(-x)=f(x),則( )
A.y=f(x)在(0,)單調(diào)遞減
B.y=f(x)在(,)單調(diào)遞減
C.y=f(x)在(0,)單調(diào)遞增
D.y=f(x)在(,)單調(diào)遞增

查看答案和解析>>

同步練習(xí)冊(cè)答案