(2010•成都一模)把正整數(shù)排列成三角形數(shù)陣(如圖甲),然后擦去第偶數(shù)行中的奇數(shù)和第奇數(shù)行中的偶數(shù),得到新的三角形數(shù)陣(如圖乙),再把圖乙中的數(shù)按從小到大的順序排成一列,得到一個數(shù)列{an},則a2010=( 。
分析:觀察乙圖,發(fā)現(xiàn)第k行有k個數(shù),第k行最后的一個數(shù)為k2,前k行共有
k(k+1)
2
個數(shù),然后以判斷出這個2010個數(shù)在第63行,第57個數(shù),求出第63行第一個數(shù),而第63行相鄰兩個數(shù)相差2,得到第63行57個數(shù)值,即可求出所求.
解答:解:圖乙中第k行有k個數(shù),第k行最后的一個數(shù)為k2,前k行共有
k(k+1)
2
個數(shù),
前62行有1953個數(shù),由2010個數(shù)出現(xiàn)在第63行,第57個數(shù),
第62行第一個數(shù)為622+1=3845,公差為2的等差數(shù)列
∴a2010=3845+(57-1)×2=3957,
故選B.
點評:本題主要考查學生會根據(jù)圖形歸納總結(jié)規(guī)律來解決問題,會進行數(shù)列的遞推式運算,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(2010•成都一模)把正整數(shù)排列成如圖甲三角形數(shù)陣,然后擦去第偶數(shù)行中的奇數(shù)和第奇數(shù)行中的偶數(shù),得到如圖乙的三角形數(shù)陣,再把圖乙中的數(shù)按從小到大的順序排成一列,得到一個數(shù)列{an},若an=2009,則n=( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2010•成都一模)在等差數(shù)列{an}中,a1+a2=3,a2+a5=5,則公差為d的值為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2010•成都一模)如圖,在多面體ABCDEF中,四邊形ABCD是矩形,在四邊形ABFE中,AB∥EF,∠EAB=90°,AB=4,AD=AE=EF=2,平面ABFE⊥平面ABCD.
(1)求證:AF⊥平面BCF;
(2)求二面角B-FC-D的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2010•成都一模)已知函數(shù)f(x)=
1
3
x3-mx2-3m2x+1
在區(qū)間(1,2)內(nèi)是增函數(shù),則實數(shù)m的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2010•成都一模)已知a∈(0,π),cos(π+a)=
3
5
,則sina=(  )

查看答案和解析>>

同步練習冊答案