8.已知函數(shù)y=Asin(ωx+ϕ)其中$A>0,ω>0,|ϕ|<\frac{π}{2}$,若函數(shù)的最小正周期為π,最大值為2,且過(0,1)點(diǎn),
(1)求函數(shù)的解析式;
(2)求函數(shù)的單調(diào)遞減區(qū)間.

分析 (1)根據(jù)函數(shù)的周期,最值過定點(diǎn),求出A,ω和φ的值即可,
(2)結(jié)合三角函數(shù)的單調(diào)性進(jìn)行求解即可.

解答 解:(1)∵函數(shù)的最小正周期為π,最大值為2,
∴A=2,T=$\frac{2π}{ω}=π$,即ω=2,
則函數(shù)y=2sin(2x+φ),
∵函數(shù)過(0,1)點(diǎn),
∴2sinφ=1,即sinφ=$\frac{1}{2}$,
∵|φ|<$\frac{π}{2}$,∴φ=$\frac{π}{6}$,
則$y=2sin(2x+\frac{π}{6})$.
(2)由2kπ+$\frac{π}{2}$≤2x+$\frac{π}{6}$≤2kπ+$\frac{3π}{2}$,k∈Z,
得kπ+$\frac{π}{6}$≤x≤kπ+$\frac{2π}{3}$,k∈Z,
即函數(shù)的單調(diào)遞減區(qū)間為為$[kπ+\frac{π}{6},kπ+\frac{2π}{3}](k∈Z)$.

點(diǎn)評(píng) 本題主要考查三角函數(shù)解析式的求解,結(jié)合條件求出A,ω和φ的值是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率e=$\frac{1}{2}$,且橢圓上的點(diǎn)到焦點(diǎn)的距離最小值為1,若F為左焦點(diǎn),A為左頂點(diǎn),過F的直線交橢圓于M,N直線AM,AN交直線x=t(t<-2)于B,C兩點(diǎn).
(1)求橢圓方程;
(2)若以BC為直徑的圓過F,求t的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.將函數(shù)f(x)=xsinx,當(dāng)${x_1},{x_2}∈[-\frac{π}{2},\frac{π}{2}]$時(shí),f(x1)>f(x2)成立,下列結(jié)論正確的是( 。
A.x1>x2B.x1>|x2|C.x1<x2D.x${\;}_{1}^{2}$>x${\;}_{2}^{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知y=e${\;}^{arctan\sqrt{2x}}$,則y′=e${\;}^{arctan\sqrt{2x}}$×$\frac{\sqrt{2x}}{2x(1+2x)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.函數(shù)y=3${\;}^{-{x}^{2}+ax}$在[$\frac{1}{2}$,1]上單調(diào)遞增,則a的取值范圍為[2,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.兩個(gè)整數(shù)1908和4187的最大公約數(shù)是( 。
A.53B.43C.51D.67

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知圓$C:{x^2}+{y^2}+2\sqrt{2}x-10=0$,點(diǎn)$A(\sqrt{2},0)$,P是圓上任意一點(diǎn),線段AP的垂直平分線l和半徑CP相交于點(diǎn)Q.
(Ⅰ)當(dāng)點(diǎn)P在圓上運(yùn)動(dòng)時(shí),求點(diǎn)Q的軌跡方程;
(Ⅱ)直線$y=kx+\sqrt{2}$與點(diǎn)Q的軌跡交于不同兩點(diǎn)A和B,且$\overrightarrow{OA}•\overrightarrow{OB}=1$(其中O為坐標(biāo)原點(diǎn)),求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.若實(shí)數(shù)x0滿足f(x0)=x0,稱x0為函數(shù)f(x)的不動(dòng)點(diǎn).有下面三個(gè)命題:
(1)若f(x)是二次函數(shù),且沒有不動(dòng)點(diǎn),則函數(shù)f(f(x))也沒有不動(dòng)點(diǎn);
(2)若f(x)是二次函數(shù),則函數(shù)f(f(x))可能有4個(gè)不動(dòng)點(diǎn);
(3)若f(x)的不動(dòng)點(diǎn)的個(gè)數(shù)是2,則f(f(x))的不動(dòng)點(diǎn)的個(gè)數(shù)不可能是3.
它們中所有真命題的序號(hào)是(1)(2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知函數(shù)f(x)=ax2+2ax+4(-3<a<0),其圖象上兩點(diǎn)的橫坐標(biāo)為x1、x&2滿足x1<x2,且x1+x2=1+a,則由(  )
A.f(x1)<f(x2B.f(x1)=f(x2
C.f(x1)>f(x2D.f(x1)、f(x&2)的大小不確定

查看答案和解析>>

同步練習(xí)冊(cè)答案