已知向量
a
=(2,-1),
b
=(-3,4),且(m
a
+
b
)與(
a
-
b
)垂直,求實數(shù)m.
考點:平面向量數(shù)量積的運算
專題:計算題,平面向量及應用
分析:運用向量的數(shù)量積的坐標表示及向量垂直的條件:數(shù)量積為0,計算即可得到m.
解答: 解:向量
a
=(2,-1),
b
=(-3,4),
則m
a
+
b
=(2m-3,-m+4),
a
-
b
=(5,-5),
由(m
a
+
b
)與(
a
-
b
)垂直,
即有(m
a
+
b
)•(
a
-
b
)=0,
即為5(2m-3)-5(4-m)=0,
解得,m=
7
3
點評:本題考查平面向量的數(shù)量積的坐標表示,考查向量垂直的條件,考查運算能力,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如圖給出的是計算
1
2
+
1
4
+
1
6
+…+
1
100
的值的一個程序框圖,其中判斷框內(nèi)應填入的條件是(  )
A、i≤100B、i>100
C、i>50D、i≤50

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知各項均為正數(shù)的等比數(shù)列{an}中,3a1,
1
2
a3,2a2成等差數(shù)列
a11-a13
a8-a10
=( 。
A、27B、1
C、-1D、-1或27

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=lg
x-1
x+1
的定義域是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知等差數(shù)列{an}的首項為1,公差d≠0,且a1,a2,a5成等比數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)令bn=
n2
anan+1
,求數(shù)列{bn}的前n項和Sn
Sn
n
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

冪函數(shù)f(x)=xn的圖象過點(3,
1
9
),則f(2)=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x )=sinxcosx-
3
cos(π+x)cosx(x∈R)
(1)求f(x)的最小正周期;
(2)若sin(π+α)=
4
5
,|α|
π
2
,求f(x)-
3
2
的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

命題“若A∩B=A,則A⊆B的逆否命題是( 。
A、若A∪B≠A,則A?B
B、若A∩B≠A,則A⊆B
C、若A⊆B,則A∩B≠A
D、若A?B,則A∩B≠A

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)在半徑等于R的圓中,一扇形的圓心角等于θ弧度,求證這扇形面積是
1
2
R2
θ;
(2)在半徑等于15cm的圓中,一扇形的圓心角含有54°求這扇形的周長和面積(π取3.14,計算結(jié)果保留兩個有效數(shù)字)

查看答案和解析>>

同步練習冊答案