分析 (1)利用極坐標與直角坐標互化的方法,可得曲線C1的直角坐標方程,從而可得參數(shù)方程;
(2)點P的坐標是$(\frac{1}{2}cosθ,\frac{{\sqrt{3}}}{2}sinθ)$,從而點P 到直線?的距離是$d=\frac{{|\frac{{\sqrt{3}}}{2}cosθ-\frac{{\sqrt{3}}}{2}sinθ-\sqrt{3}|}}{2}=\frac{{\sqrt{3}}}{4}[\sqrt{2}sin(θ-\frac{π}{4})+2]$,即可求它到直線l的距離的最小值.
解答 解:(1)C1的普通方程為:x2+y2=1.
C1的參數(shù)方程為:$\left\{{\begin{array}{l}{x=cosθ}\\{y=sinθ}\end{array}}\right.$(θ為參數(shù)).
(2)C2的參數(shù)方程為$\left\{{\begin{array}{l}{x=\frac{1}{2}cosθ}\\{y=\frac{{\sqrt{3}}}{2}sinθ}\end{array}}\right.$(θ為參數(shù)).故點P的坐標是$(\frac{1}{2}cosθ,\frac{{\sqrt{3}}}{2}sinθ)$,
從而點P 到直線?的距離是$d=\frac{{|\frac{{\sqrt{3}}}{2}cosθ-\frac{{\sqrt{3}}}{2}sinθ-\sqrt{3}|}}{2}=\frac{{\sqrt{3}}}{4}[\sqrt{2}sin(θ-\frac{π}{4})+2]$
由此當$sin(θ-\frac{π}{4})=-1$時,d取得最小值,且最小值為$\frac{{\sqrt{6}}}{4}(\sqrt{2}-1)$.
點評 本題考查極坐標與直角坐標互化,考查參數(shù)方程的運用,考查學生的計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2 | B. | $\sqrt{5}$ | C. | 2$\sqrt{5}$ | D. | $\frac{{\sqrt{5}}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 0個 | B. | 1個 | C. | 2個 | D. | 無窮多個 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{\sqrt{17}}{2}$ | B. | $\frac{\sqrt{15}}{3}$ | C. | $\frac{\sqrt{57}}{3}$ | D. | $\frac{8}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{9}{2}$ | B. | 4 | C. | 3 | D. | 0 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 0<e≤$\frac{\sqrt{3}}{2}$ | B. | $\frac{1}{2}$≤e<1 | C. | $\frac{\sqrt{3}}{2}$<e<1 | D. | $\frac{\sqrt{3}}{2}$≤e<1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com