精英家教網(wǎng)已知:如圖,在四棱錐P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AB=1,BC=2.
(Ⅰ)求證:平面PDC⊥平面PAD;
(Ⅱ)若E是PD的中點,求異面直線AE與PC所成角的余弦值;
(Ⅲ)點G在線段BC上,且BG=
3
,求點D到平面PAG的距離.
分析:法一:(Ⅰ)證明平面PDC內(nèi)的直線CD,垂直平面PAD內(nèi)的兩條相交直線PA,AD即可證明CD⊥平面PAD,從而證明平面PDC⊥平面PAD;
(Ⅱ)E是PD的中點,設(shè)CD的中點為F,連接EF、AF,說明∠AEF是異面直線AE與PC所成角或其補角,解三角形AEF,就可求異面直線AE與PC所成角的余弦值;
(Ⅲ)過點D作DM⊥AG于M.點G在線段BC上,且BG=
3
,說明線段DM的長是點D到平面PAG的距離,利用三角形面積求點D到平面PAG的距離.
法二:以A為原點,AB所在直線為x軸,AD所在直線為y軸,AP所在直線為z軸建立空間直角坐標系,
(Ⅰ)利用
CD
AD
=0 及 
CD
AP
=0
證明CD⊥平面PAD.推出平面PDC⊥平面PAD.
(Ⅱ)利用cos<
AE
PC
>=
AE
PC
|
AE
|•|
PC
|
直接求解即可.
(Ⅲ)作DQ⊥AG于Q,說明線段DQ的長是點D到平面PAG的距離,利用2S△ADG=S矩形ABCD,
|
AG
|•|
DQ
|=|
AB
|•|
AD
|=2
求出點D到平面PAG的距離為1.
解答:精英家教網(wǎng)解法一:(Ⅰ)證明:∵PA⊥平面ABCD,
∴PA⊥CD.(1分)
∵四邊形ABCD是矩形,
∴AD⊥CD.
又PA∩AD=A,
∴CD⊥平面PAD.(3分)
又∵CD?平面PDC,
∴平面PDC⊥平面PAD.(5分)
(Ⅱ)解:設(shè)CD的中點為F,連接EF、AF.
∵E是PD中點,
∴EF∥PC.
∴∠AEF是異面直線AE與PC所成角或其補角.(7分)
由PA=AB=1,BC=2,計算得AE=
1
2
PD=
5
2
,EF=
1
2
PC=
6
2
AF=
17
2
,cos∠AEF=
AE2+EF2-AF2
2AE•EF
=
5
4
+
6
4
-
17
4
2•
5
2
6
2
=-
30
10
,(9分)
∴異面直線AE與PC所成角的余弦值為
30
10
.(10分)
(Ⅲ)解:過點D作DM⊥AG于M.
∵PA⊥平面ABCD,
∴PA⊥DM.
又PA∩AG=A,
∴DM⊥平面PAG.
∴線段DM的長是點D到平面PAG的距離.(12分)
S△AGD=
1
2
AG•DM=
1
2
1+(
3
)
2
•DM=1
,
解得DM=1.
所以點D到平面PAG的距離為1.(14分)
解法二:如圖,以A為原點,AB所在直線為x軸,AD所在直線為y軸,AP所在直線為z軸建立空間直角坐標系,
則A(0,0,0),B(1,0,0),C(1,2,0,),D(0,2,0),E(0,1,),精英家教網(wǎng)P(0,0,1).
CD
=(-1,0,0),
AD
=(0,2,0),
AP
=(0,0,1),
AE
=(0,1,
1
2
),
PC
=(1,2,-1).(2分)
(Ⅰ)∵
CD
AD
=0
,
∴CD⊥AD.
CD
AP
=0

∴CD⊥AP.
又AP∩AD=A,
∴CD⊥平面PAD.(5分)
∵CD?平面PAD,
∴平面PDC⊥平面PAD.(7分)

(Ⅱ)∵cos<
AE
,
PC
>=
AE
PC
|
AE
|•|
PC
|
=
2-
1
2
1+
1
4
6
=
30
10
,(9分)
∴異面直線AE與PC所成角的余弦值為
30
10
.(10分)
(Ⅲ)作DQ⊥AG于Q.
∵PA⊥平面ABCD,
∴PA⊥DQ.
又PA∩AG=A,
∴DQ⊥平面PAG.
∴線段DQ的長是點D到平面PAG的距離.(12分)
∵2S△ADG=S矩形ABCD,
|
AG
|•|
DQ
|=|
AB
|•|
AD
|=2
,
|
AG
|=2
,得到|
DQ
|=1

∴點D到平面PAG的距離為1.(14分)
點評:本題考查平面與平面垂直的判定,異面直線及其所成的角,點、線、面間的距離計算,考查空間想象能力,邏輯思維能力,是中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)已知:如圖,在四棱錐P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AB=1,BC=2.
(Ⅰ)求證:平面PDC⊥平面PAD;
(Ⅱ)若E是PD的中點,求異面直線AE與PC所成角的余弦值;
(Ⅲ)在BC邊上是否存在一點G,使得D點到平面PAG的距離為1?若存在,求出BG的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知:如圖,在四棱錐P-ABCD中,四邊形ABCD為正方形,PA⊥面ABCD,且PA=AB=2,E為PD中點.
(Ⅰ)證明:PB∥平面AEC;
(Ⅱ)證明:平面PCD⊥平面PAD;
(Ⅲ)求二面角E-AC-D的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:2014屆山東省高二上學期期末模塊調(diào)研理科數(shù)學試卷(解析版) 題型:解答題

(本小題滿分12分)

已知:如圖,在四棱錐中,四邊形為正方形,,且,中點.

(1)證明://平面

(2)證明:平面平面;

(3)求二面角的正弦值.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013屆北京市東城區(qū)高三12月聯(lián)考理科數(shù)學試卷(解析版) 題型:解答題

已知:如圖,在四棱錐中,四邊形為正方形,,且中點.

(Ⅰ)證明://平面;

(Ⅱ)證明:平面平面;

(Ⅲ)求二面角的正弦值.

 

查看答案和解析>>

同步練習冊答案