直角坐標系中,以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,已知直線l的極坐標方程ρcos(θ-
π
4
)=
2
,曲線C的參數(shù)方程為
x=2cosα
y=sinα
為參數(shù)),求曲線C截直線l所得的弦長
分析:先將直線的極坐標方程化成直角坐標方程,再將直線的參數(shù)方程化成直角坐標方程,然后求出兩直線的交點,最后利用兩點的距離公式求解即可.
解答:解:由ρcos(θ-
π
4
)=
2
可化為直角坐標方程x+y-2=0(1)
參數(shù)方程為
x=2cosα
y=sinα
為參數(shù))可化為直角坐標方程
x2
4
+y2=1
(2)
聯(lián)立(1)(2)得兩曲線的交點為(2,0),(
6
5
,
4
5
)

所求的弦長=
(2-
6
5
)
2
+(0-
4
5
)
2
=
4
2
5
點評:本題主要考查了簡單曲線的極坐標方程,以及直線的參數(shù)方程等知識,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在直角坐標系中,以坐標原點為極點x軸的正半軸為極軸建立極坐標系.直線I的參數(shù)方程是.
x=-1+
2
2
t
y=1+
2
2
t
(r為參數(shù)),曲線C的極坐標方程是p=2,直線l與曲線C交于A、B,則|AB|=( 。
A、
2
B、2
2
C、4
D、4
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•福建)選修4-4:坐標系與參數(shù)方程
在平面直角坐標系中,以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系.已知直線l上兩點M,N的極坐標分別為(2,0),(
2
3
3
,
π
2
),圓C的參數(shù)方程
x=2+2cosθ
y=-
3
+2sinθ
(θ為參數(shù)).
(Ⅰ)設P為線段MN的中點,求直線OP的平面直角坐標方程;
(Ⅱ)判斷直線l與圓C的位置關系.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

選修4-4:坐標系與參數(shù)方程
在平面直角坐標系中,以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,已知曲線C的極坐標方程
為ρsin2θ=2acosθ(a>0),過點P(-2,-4)的直線l的參數(shù)方程為
x=-2+
2
2
t
y=-4+
2
2
t
(t為參數(shù)),直線l與曲線C相交于A,B兩點.
(Ⅰ)寫出曲線C的直角坐標方程和直線l的普通方程;
(Ⅱ)若|PA|•|PB|=|AB|2,求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系中,以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系.已知直線l上兩點M,N的極坐標分別為(2,0),(
2
3
3
, 
π
2
)
,曲線C的參數(shù)方程
x=-1+2cosθ
y=2sinθ
(θ為參數(shù)且0<θ<π).
(1)設P為線段MN的中點,求直線OP的平面直角坐標方程;
(2)判斷直線l與曲線C的交點個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

A.選修4-1:幾何證明選講
如圖,直角△ABC中,∠B=90°,以BC為直徑的⊙O交AC于點D,點E是AB的中點.
求證:DE是⊙O的切線.
B.選修4-2:矩陣與變換
已知二階矩陣A有特征值-1及其對應的一個特征向量為
1
-4
,點P(2,-1)在矩陣A對應的變換下得到點P′(5,1),求矩陣A.
C.選修4-4:坐標系與參數(shù)方程
在直角坐標系中,以坐標原點為極點,x軸的正半軸為極軸建立極坐標系.已知直線l的極坐標方程為ρcos(θ-
π
4
)=
2
,曲線C的參數(shù)方程為
x=2cosα
y=sinα
(α為參數(shù)),求曲線C截直線l所得的弦長.
D.選修4-5:不等式選講
已知a,b,c都是正數(shù),且abc=8,求證:log2(2+a)+log2(2+b)+log2(2+c)≥6.

查看答案和解析>>

同步練習冊答案