已知A(-1,-1),B(2,0),C(1,2),則△ABC中AB邊上的高所在的直線方程為
 
分析:利用斜率坐標(biāo)公式求出直線AB的斜率,再根據(jù)垂直關(guān)系求出AB邊上的高線的斜率,然后根據(jù)點(diǎn)斜式方程求直線方程即可.
解答:解:KAB=
0+1
2+1
=
1
3
,∴AB邊上的高線的斜率K=-3,
∴AB邊上的高線的點(diǎn)斜式方程為:y-2=-3(x-1),即3x+y-5=0.
故答案是3x+y-5=0.
點(diǎn)評(píng):本題考查直線的斜率坐標(biāo)公式、直線的點(diǎn)斜式方程及直線垂直的條件.兩條直線垂直(斜率存在且不為0),其斜率之積為-1.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知A(1,1),B(4,3),C(2m,m-1),
(Ⅰ)若A,B,C可構(gòu)成三角形,求實(shí)數(shù)m所要滿足的條件;
(Ⅱ)若A,B,C,構(gòu)成以∠C為直角的直角三角形,求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

點(diǎn)P(x,y)在平行四邊形ABCD內(nèi),已知A(-1,-1),B(2,1),D(0,2),則z=2x+y的最大值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合An={1,3,7,…,(2n-1)}(n∈N*),若從集合An中任取k(k=1,2,3,…,n)個(gè)數(shù),其所有可能的k個(gè)數(shù)的乘積的和為TK(若只取一個(gè)數(shù),規(guī)定乘積為此數(shù)本身),記Sn=T1+T2+T3+…+Tn.例如當(dāng)n=1時(shí),A1={1},T1=1,S1=1;當(dāng)n=2時(shí),A2={1,3},T1=1+3,T2=1×3,S2=1+3+1×3=7.則Sn=(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(Ⅰ)已知a+a-1=3,求a2+a-2的值;
(Ⅱ)化簡求值:1.10+
364
-0.5-2+lg25+2lg2;
(Ⅲ)解不等式:log2(x+1)<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a、b是不共線的向量,若1a+b,=a+λ2b(λ1、λ2∈R)則A、B、C三點(diǎn)共線的充要條件為(    )

A.λ12=-1                              B.λ12=1

C.λ1λ2-1=0                              D.λ1·λ2+1=0

查看答案和解析>>

同步練習(xí)冊答案