如圖,點(diǎn)A,B,C是橢圓M:數(shù)學(xué)公式的三個(gè)頂點(diǎn),F(xiàn)1,F(xiàn)2是它的左、右焦點(diǎn),P是M上一點(diǎn),且PF2⊥OB.則下列命題:
①存在a,b使得△AF2P為等腰直角三角形
②存在a,b使得△F1F2P為等腰直角三角形
③存在a,b使得△OF2P為等腰直角三角形
④存在a,b使得△BF2P為等腰直角三角形
其中真命題的個(gè)數(shù)是


  1. A.
    1
  2. B.
    2
  3. C.
    3
  4. D.
    4
C
分析:利用橢圓的長(zhǎng)軸,短軸,焦距的數(shù)量關(guān)系判定①②的正誤;利用F2P與c的關(guān)系判定③④的正誤,得到選項(xiàng).
解答:解:由題意可知F2P<b<a,所以存在a,b使得△AF2P為等腰直角三角形不可能,①是錯(cuò)誤的;
當(dāng)2c=F2P時(shí),即滿足2c=,a=時(shí),△F1F2P為等腰直角三角形,所以②正確.
存在a,b使得△OF2P為等腰直角三角形,只需c=F2P即可,所以③正確.
只需BF2=F2P,即a-c=F2P可得出a=c,而a>c矛盾,所以④不正確.
故選C.
點(diǎn)評(píng):本題考查題意的基本性質(zhì),長(zhǎng)軸、短軸、焦距、通經(jīng)之間的關(guān)系,考查學(xué)生的計(jì)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,點(diǎn)A,B,C是圓O上的點(diǎn),且AB=4,∠ACB=45°,則圓O的面積等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

15、選做題:如圖,點(diǎn)A、B、C是圓O上的點(diǎn),且AB=4,∠ACB=30°,則圓O的面積等于
16π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,點(diǎn)A,B,C是橢圓M:
x2
a2
+
y2
b2
=1
的三個(gè)頂點(diǎn),F(xiàn)1,F(xiàn)2是它的左、右焦點(diǎn),P是M上一點(diǎn),且PF2⊥OB.則下列命題:
①存在a,b使得△AF2P為等腰直角三角形
②存在a,b使得△F1F2P為等腰直角三角形
③存在a,b使得△OF2P為等腰直角三角形
④存在a,b使得△BF2P為等腰直角三角形
其中真命題的個(gè)數(shù)是( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,點(diǎn)A,B,C是圓O上的點(diǎn),且BC=2
3
,∠BAC=
3
,則圓O的面積等于

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

A:(坐標(biāo)系與參數(shù)方程選做題)在極坐標(biāo)系中,由θ=0,θ=
π
3
,ρcosθ+ρsinθ=1圍成圖形的面積是
3-
3
4
3-
3
4

B:(幾何證明選講選做題)如圖,點(diǎn)A,B,C是圓O上的點(diǎn),且AB=4,∠ACB=30°,則圓O的面積等于
16π
16π

C:(不等式選講)要使關(guān)于x的不等式|x-1|+|x-1|≤3在實(shí)數(shù)范圍內(nèi)有解,則a的取值范圍是
[-2,4]
[-2,4]

查看答案和解析>>

同步練習(xí)冊(cè)答案