已知橢圓C1(a>b>0)的右頂點為A(1,0),過C1的焦點且垂直長軸的弦長為1。
(1)求橢圓C1的方程;
(2)設(shè)點P在拋物線C2:y=x2+h(h∈R)上,C2在點P處的切線與C1交于點M、N。當(dāng)線段AP的中點與MN的中點的橫坐標(biāo)相等時,求h的最小值。
解:(1)由題意,得
從而
因此,所求的橢圓方程為;
(2)如圖,設(shè)
則拋物線C2在點P處的切線斜率為
直線MN的方程為:y=2tx-t2+h
將上式代入橢圓C1的方程中,得4x2+(2tx-t2+h)2-4=0
  ①
因為直線MN與橢圓C1有兩個不同的交點,
所以①式中的Δ=16[-t4+2(h+2)t2-h2+4] >0  ②
設(shè)線段MN的中點的橫坐標(biāo)是x3,則

設(shè)線段PA的中點的橫坐標(biāo)是x4,則
由題意,得x3=x4,即t2+(1+h)t+1=0  ③
 由③式中的Δ2=(1+h)2-4≥0,得h≥1或h≤-3
當(dāng)h≤-3時,h+2<0,4-h2<0,則不等式②不成立,
所以h≥1
當(dāng)h=1時,代入方程③得t=-1
將h=1,t=-1代入不等式②,檢驗成立,
所以,h的最小值為1。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年廣東省肇慶四中高三(上)第二次月考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

在平面直角坐標(biāo)系xOy中,已知橢圓C1(a>b>0)的左焦點為F1(-1,0),且點P(0,1)在C1上.
(1)求橢圓C1的方程;
(2)設(shè)直線l同時與橢圓C1和拋物線C2:y2=4x相切,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年福建省廈門二中高二(上)期末數(shù)學(xué)復(fù)習(xí)試卷7(文科)(解析版) 題型:解答題

在平面直角坐標(biāo)系xOy中,已知橢圓C1(a>b>0)的左焦點為F1(-1,0),且點P(0,1)在C1上.
(1)求橢圓C1的方程;
(2)設(shè)直線l同時與橢圓C1和拋物線C2:y2=4x相切,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年海南省樂東縣民族中學(xué)高三(上)第三次月考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

在平面直角坐標(biāo)系xOy中,已知橢圓C1(a>b>0)的左焦點為F1(-1,0),且點P(0,1)在C1上.
(1)求橢圓C1的方程;
(2)設(shè)直線l同時與橢圓C1和拋物線C2:y2=4x相切,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年江西省贛州三中、于都中學(xué)高三聯(lián)考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知橢圓C1(a>b>0)的右頂點A(1,0),過C1的焦點且垂直長軸的弦長為1.
(1)求橢圓C1的方程;
(2)設(shè)點P在拋物線C2:y=x2+h(h∈R)上,C2在點P處的切線與C1交于點M,N.若存在點P,使得線段AP的中點與MN的中點的橫坐標(biāo)相等時,求h的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年廣東省湛江市高考數(shù)學(xué)二模試卷(文科)(解析版) 題型:解答題

已知橢圓C1(a>b>0)的左、右頂點分別是A、B,P是雙曲線C2=1右支x軸上方的一點,連接AP交橢圓于點C,連接PB并延長交橢圓于點D.
(1)若a=2b,求橢圓C1及雙曲線C2的離心率;
(2)若△ACD和△PCD的面積相等,求點P的坐標(biāo)(用a,b表示).

查看答案和解析>>

同步練習(xí)冊答案