3.已知a、b∈R,且2ab+2a2+2b2-9=0,若M為a2+b2的最小值,則約束條件$\left\{\begin{array}{l}0≤y≤\sqrt{{M^2}-{x^2}}\\ x-y≥-M\\ x+y≤M.\end{array}\right.$所確定的平面區(qū)域內(nèi)整點(橫坐標縱坐標均為整數(shù)的點)的個數(shù)為(  )
A.9B.13C.16D.18

分析 根據(jù)基本不等式的性質(zhì)求出M的值,利用數(shù)形結(jié)合進行求解即可.

解答 解:由2ab+2a2+2b2-9=0結(jié)合2ab≤a2+b2得3(a2+b2)≥9⇒a2+b2≥3(當且僅當a=b時等號成立)
故M=3,故約束條件確定的平面區(qū)域如右圖陰影所示,在區(qū)域內(nèi),
在x軸上整點有7個,在直線x=1上有5個,在x=2上有3個,
在x=3上有1個,共16個.

故選:C

點評 本題主要考查線性規(guī)劃的應(yīng)用,利用基本不等式的性質(zhì)求出M的值是解決本題的關(guān)鍵.綜合性較強.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知向量$\overrightarrow{a}$=(2sinx,$\sqrt{3}$sinx),$\overrightarrow$=(sinx,2cosx),函數(shù)f(x)=2$\overrightarrow{a}$•$\overrightarrow$,若不等式f(x)≤m在[0,$\frac{π}{2}$]上有解,則實數(shù)m的最小值為( 。
A.0B.-1C.2D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知平面向量$\overrightarrow{a}$=(1,0),$\overrightarrow$=(-$\frac{1}{2}$,$\frac{\sqrt{3}}{2}$),則$\overrightarrow{a}$與$\overrightarrow{a}$+$\overrightarrow$的夾角為( 。
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.一幾何體的三視圖如圖示,則該幾何體的體積為30.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知直線l的參數(shù)方程為$\left\{{\begin{array}{l}{x=-1+tcosα}\\{y=1+tsinα}\end{array}}\right.$(t為參數(shù)).以O(shè)為極點,x軸的非負半軸為極軸建立極坐標系,曲線C的極坐標方程為ρ=ρcosθ+2.
(Ⅰ)寫出直線l經(jīng)過的定點的直角坐標,并求曲線C的普通方程;
(Ⅱ)若$α=\frac{π}{4}$,求直線l的極坐標方程,以及直線l與曲線C的交點的極坐標.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.如圖是正四面體的平面展開圖,G,H,M,N分別為DE,BE,EF,EC的中點,在這個正四面體中,有以下結(jié)論:
①GH與EF平行;
②BE與MN為異面直線;
③GH與AF成60°角;
④MN∥平面ADF;
其中正確結(jié)論的序號是③④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,已知四棱錐P-ABCD中,底面ABCD是直角梯形,∠ADC=90°,AB∥CD,AD=DC=$\frac{1}{2}$AB=$\sqrt{2}$,平面PBC⊥平面ABCD.
(1)求證:AC⊥PB;
(2)在側(cè)棱PA上是否存在一點M,使得DM∥平面PCB?若存在,試給出證明;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.設(shè)函數(shù)f(x)=ln(1+ax)+bx,g(x)=f(x)-bx2
(Ⅰ)若a=1,b=-1,求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若曲線y=g(x)在點(1,ln3)處的切線與直線11x-3y=0平行.
(i)  求a,b的值;
(ii)求實數(shù)k(k≤3)的取值范圍,使得g(x)>k(x2-x)對x∈(0,+∞)恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.某次比賽甲得分的莖葉圖如圖所示,若去掉一個最高分,去掉一個最低分,則剩下4個分數(shù)的方差為14.

查看答案和解析>>

同步練習(xí)冊答案