如圖1所示為一平面圖形的直觀圖,則此平面圖形可能是圖2中的( 。

 

【答案】

C

【解析】略

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)某造紙廠擬建一座平面圖形為矩形且面積為162平方米的三級污水處理池,池的深度一定(平面圖如圖所示),如果池四周圍墻建造單價為400元/米,中間兩道隔墻建造單價為248元/米,池底建造單價為80
元/米2,水池所有墻的厚度忽略不計.
(1)試設(shè)計污水處理池的長和寬,使總造價最低,并求出最低總造價;
(2)若由于地形限制,該池的長和寬都不能超過16米,試設(shè)計污水池的長和寬,使總造價最低,并求出最低總造價.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)某工廠擬建一座平面圖(如圖所示)為矩形且面積為200m2的三級污水處理池,由于地形限制,長、寬都不能超過16m.如果池外周壁建造單價為每米400元,中間兩條隔墻建造單價為每米248元,池底建造單價為每平方米80元(池壁厚度忽略不計,且池無蓋).
(1)寫出總造價y(元)與污水處理池長x(m)的函數(shù)關(guān)系式,并指出其定義域;
(2)求污水處理池的長和寬各為多少時,污水處理池的總造價最低?并求出最低總造價.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)安通駕校擬圍著一座山修建一條環(huán)形訓練道路OASBCD,道路的平面圖如圖所示(單位:km),已知曲線ASB為函數(shù)y=Asin(ωx+φ)(A>0,0<ω<1,|φ|<
π
2
),x∈[0,3]的圖象,且最高點為S(1,2),折線段AOD為固定線路,其中AO=
3
,OD=4,折線段BCD為可變線路,但為保證駕駛安全,限定∠BCD=120°.
(1)求A,ω,φ的值;
(2)應如何設(shè)計,才能使折線段道路BCD最長?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)某造紙廠擬建一座平面圖形為矩形且面積為162平方米的三級污水處理池,池的深度一定(平面圖如圖所示),如果池四周圍墻建造單價為400元/米,中間兩道隔墻建造單價為248元/米,池底建造單價為80元/米2,水池所有墻的厚度忽略不計.
(1)設(shè)污水處理池的寬為x,求總造價f(x)的函數(shù)解析式;
(2)要使總造價最低,求最低總造價及對應污水處理池的長和寬.

查看答案和解析>>

科目:高中數(shù)學 來源:2013年山東省菏澤市鄄城一中高考數(shù)學三模試卷(文科)(解析版) 題型:解答題

某造紙廠擬建一座平面圖形為矩形且面積為162平方米的三級污水處理池,池的深度一定(平面圖如圖所示),如果池四周圍墻建造單價為400元/米,中間兩道隔墻建造單價為248元/米,池底建造單價為80
元/米2,水池所有墻的厚度忽略不計.
(1)試設(shè)計污水處理池的長和寬,使總造價最低,并求出最低總造價;
(2)若由于地形限制,該池的長和寬都不能超過16米,試設(shè)計污水池的長和寬,使總造價最低,并求出最低總造價.

查看答案和解析>>

同步練習冊答案