設(shè)定義在R上的函數(shù)f(x)=
1
|x-2
 ,(x≠2)
1 ,(x=2)
若關(guān)于x的方程f2(x)+bf(x)+c=0有5個不同的實數(shù)解,則這5個根的和等于(  )
A、12B、10C、6D、5
分析:先根據(jù)一元二次方程根的情況可判斷f(2)一定是一個解,再假設(shè)f(x)的一解為A可得到x1+x2=4,同理可得到x3+x4=4,進而可得到x1+x2+x3+x4+x5=10,即可得到最后答案.
解答:解:對于f2(x)+bf(x)+c=0來說,f(x)最多只有2解,
又f(x)=
1
|x-2|
(x≠2),當x不等于2時,x最多四解.
而題目要求5解,即可推斷f(2)為一解!
假設(shè)f(x)的1解為A,得f(x)=
1
|x-2|
=A;
算出x1=2+A,x2=2-A,x1+x2=4;
同理:x3+x4=4;
所以:x1+x2+x3+x4+x5=4+4+2=10;
故選B.
點評:本題主要考查一元二次方程根的情況和含有絕對值的函數(shù)的解法.考查基礎(chǔ)知識的綜合運用能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)定義在R上的函數(shù)f(x)=
1
x-2
(x>2)
1
2-x
(x<2)
1(x=2)
,若關(guān)于x的方程f2(x)+af(x)+b=3有且只有3個不同實數(shù)解x1、x2、x3,且x1<x2<x3,則x12+x22+x32=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)定義在R上的函數(shù)f(x)滿足f(x)•f(x+2)=3,若f(1)=2,則f(5)=
2
2
;f(2011)=
3
2
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•順義區(qū)二模)設(shè)定義在R上的函數(shù)f(x)是最小正周期為2π的偶函數(shù),f′(x)是f(x)的導(dǎo)函數(shù).當x∈[0,π]時,0<f(x)<1;當x∈(0,π)且x≠
π
2
時,(x-
π
2
)f′(x)<0
.則函數(shù)y=f(x)-cosx在[-3π,3π]上的零點個數(shù)為
6
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)定義在R上的函數(shù)f(x)滿足f(x+π)=f(x-π),f(
π
2
-x
)=f(
π
2
+x
),當x∈[-
π
2
π
2
]
時,0<f(x)<1;當x∈(-
π
2
,
π
2
)
且x≠0時,x•f′(x)<0,則y=f(x)與y=cosx的圖象在[-2π,2π]上的交點個數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)定義在R上的函數(shù)f(x)同時滿足以下條件:①f(x+1)=-f(x)對任意的x都成立;②當x∈[0,1]時,f(x)=ex-e•cos
πx
2
+m(其中e=2.71828…是自然對數(shù)的底數(shù),m是常數(shù)).記f(x)在區(qū)間[2013,2016]上的零點個數(shù)為n,則(  )
A、m=-
1
2
,n=6
B、m=1-e,n=5
C、m=-
1
2
,n=3
D、m=e-1,n=4

查看答案和解析>>

同步練習(xí)冊答案