1.在數(shù)學活動中,小明為了求$\frac{1}{2}$+$\frac{1}{{2}^{2}}$+$\frac{1}{{2}^{3}}$+$\frac{1}{{2}^{4}}$+…+$\frac{1}{{2}^{n}}$的值(結(jié)果用n表示),設(shè)計如圖所示的幾何圖形.請你利用這個幾何圖形,求$\frac{1}{2}$+$\frac{1}{{2}^{2}}$+$\frac{1}{{2}^{3}}$+$\frac{1}{{2}^{4}}$+…+$\frac{1}{{2}^{n}}$的值為$1-\frac{1}{{2}^{n}}$.

分析 通過圖象可得規(guī)律,直接可得結(jié)論.

解答 解:由圖可知$\frac{1}{2}$=1-$\frac{1}{2}$,
$\frac{1}{2}+\frac{1}{{2}^{2}}$=1-$\frac{1}{{2}^{2}}$,
$\frac{1}{2}+\frac{1}{{2}^{2}}+\frac{1}{{2}^{3}}$=1-$\frac{1}{{2}^{3}}$,

$\frac{1}{2}$+$\frac{1}{{2}^{2}}$+$\frac{1}{{2}^{3}}$+$\frac{1}{{2}^{4}}$+…+$\frac{1}{{2}^{n}}$=1-$\frac{1}{{2}^{n}}$,
故答案為:$1-\frac{1}{{2}^{n}}$.

點評 本題以幾何圖形為載體,考查等比數(shù)列的求和,注意解題方法的積累,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

查看答案和解析>>

同步練習冊答案