一支足球隊每場比賽獲勝(得3分)的概率為a, 與對手踢平(得1分)的概率為b負(fù)于對手(得0分)的概率為.已知該足球隊進行一場比賽得分的期望是1, 則的最小值為(   )

A.              B.              C.              D.

 

【答案】

A

【解析】

試題分析:根據(jù)題意,由于足球隊每場比賽獲勝(得3分)的概率為a, 與對手踢平(得1分)的概率為b負(fù)于對手(得0分)的概率為c,則可知a+b+c=1,可知該足球隊進行一場比賽得分的期望3a+b=1,則,當(dāng)a=b時等號成立,故答案為A。

考點:不等式

點評:主要是考查了均值不等式的求解最值的運用,屬于基礎(chǔ)題。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在某校運動會中,甲、乙、丙三支足球隊進行單循環(huán)賽(即每兩隊比賽一場)共賽三場,每場比賽勝者得3分,負(fù)者得0分,沒有平局.在每一場比賽中,甲勝乙的概率為
1
3
,甲勝丙的概率為
1
4
,乙勝丙的概率為
1
3

(1)求甲隊獲第一名且丙隊獲第二名的概率;
(2)設(shè)在該次比賽中,甲隊得分為ξ,求ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在某校運動會中,甲、乙、丙三支足球隊進行單循環(huán)賽(即每兩隊比賽一場)共賽三場,每場比賽勝者得3分,負(fù)者得0分,沒有平局。在每一場比賽中,甲勝乙的概率為,甲勝丙的概率為,乙勝丙的概率為

   (1)求甲隊獲第一名且丙隊獲第二名的概率;

   (2)設(shè)在該次比賽中,甲隊得分為的分布列和數(shù)學(xué)期望。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在某校運動會中,甲、乙、丙三支足球隊進行單循環(huán)賽(即每兩隊比賽一場)共賽三場,每場比賽勝者得3分,負(fù)者得0分,沒有平局。在每一場比賽中,甲勝乙的概率為,甲勝丙的概率為,乙勝丙的概率為;

   (1)求甲隊獲第一名且丙隊獲第二名的概率;

   (2)設(shè)在該次比賽中,甲隊得分為,求的分布列和數(shù)學(xué)期望。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分12分)

     在某校運動會中,甲、乙、丙三支足球隊進行單循環(huán)賽(即每兩隊比賽一場)共賽三場,每場比賽勝者得3分,負(fù)者得0分,沒有平局。在每一場比賽中,甲勝乙的概率為,甲勝丙的概率為,乙勝丙的概率為;

   (1)求甲隊獲第一名且丙隊獲第二名的概率;

   (2)設(shè)在該次比賽中,甲隊得分為的分布列和數(shù)學(xué)期望。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年湖北省襄陽市襄樊五中高考適應(yīng)性考試數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

在某校運動會中,甲、乙、丙三支足球隊進行單循環(huán)賽(即每兩隊比賽一場)共賽三場,每場比賽勝者得3分,負(fù)者得0分,沒有平局.在每一場比賽中,甲勝乙的概率為,甲勝丙的概率為,乙勝丙的概率為;
(1)求甲隊獲第一名且丙隊獲第二名的概率;
(2)設(shè)在該次比賽中,甲隊得分為ξ,求ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊答案