設函數(shù)f(x)=ln(2x+3)+x2
①討論f(x)的單調(diào)性;
②求f(x)在區(qū)間[-1,0]的最大值和最小值.
分析:①確定函數(shù)的定義域,求導函數(shù),利用導數(shù)的正負,即可得到函數(shù)的單調(diào)區(qū)間;
②由①知f(x)在區(qū)間[-1,0]的最小值為f(-
1
2
),比較端點的函數(shù)值,可得函數(shù)的最大值.
解答:解:f(x)的定義域為(-
3
2
,+∞)…(1分)
①求導函數(shù)可得f′(x)=
2
2x+3
+2x
=
2(2x+1)(x+1)
2x+3
…(3分)
當-
3
2
<x<-1時,f′(x)>0;當-1<x<-
1
2
時,f′(x)<0;當x>-
1
2
時,f′(x)>0.…(4分)
從而,f(x)在區(qū)間(-
3
2
,-1),(-
1
2
,+∞)單調(diào)遞增,在區(qū)間(-1,-
1
2
)單調(diào)遞減…(7分)
②由①知f(x)在區(qū)間[-1,0]的最小值為f(-
1
2
)=ln2+
1
4
,…(9分)
又f(-1)=1,f(0)=ln3>1,…(11分)
∴最大值為f(0)=ln3…(12分)
點評:本題考查導數(shù)知識的運用,考查函數(shù)的單調(diào)性,考查函數(shù)的最值,解題的關鍵是正確求導,確定函數(shù)的單調(diào)性.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=ln(x+a)+x2
(I)若當x=-1時,f(x)取得極值,求a的值,并討論f(x)的單調(diào)性;
(II)若f(x)存在極值,求a的取值范圍,并證明所有極值之和大于ln
e2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(Ⅰ)設函數(shù)f(x)=ln(1+x)-
2x
x+2
,證明:當x>0時,f(x)>0;
(Ⅱ)從編號1到100的100張卡片中每次隨機抽取一張,然后放回,用這種方式連續(xù)抽取20次,設抽得的20個號碼互不相同的概率為P.證明:P<(
9
10
)
19
1
e2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009•楊浦區(qū)一模)設函數(shù)f(x)=ln(x2-x-6)的定義域為集合A,集合B={x|
5x+1
>1}.請你寫出一個一元二次不等式,使它的解集為A∩B,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=ln(x+a)+x2(a>
2
)

(1)若a=
3
2
,解關于x不等式f(e
x
-
3
2
)<ln2+
1
4
;
(2)證明:關于x的方程2x2+2ax+1=0有兩相異解,且f(m)和f(n)分別是函數(shù)f(x)的極小值和極大值(m,n為該方程兩根,且m>n).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=ln(x+a)+2x2
(1)若當x=-1時,f(x)取得極值,求a的值;
(2)在(1)的條件下,方程ln(x+a)+2x2-m=0恰好有三個零點,求m的取值范圍;
(3)當0<a<1時,解不等式f(2x-1)<lna.

查看答案和解析>>

同步練習冊答案