某學(xué)校為調(diào)查高一新生上學(xué)路程所需要的時(shí)間(單位:分鐘),從高一年級新生中隨機(jī)抽取100名新生按上學(xué)所需時(shí)間分組:第1組,第2組,第3組,第4組,第5組,得到的頻率分布直方圖如圖所示.

(1)根據(jù)圖中數(shù)據(jù)求的值
(2)若從第3,4,5組中用分層抽樣的方法抽取6名新生參與交通安全問卷調(diào)查,應(yīng)從第3,4,5組
各抽取多少名新生?
(3)在(2)的條件下,該校決定從這6名新生中隨機(jī)抽取2名新生參加交通安全宣傳活動,求第4組至少有一名志愿者被抽中的概率.

(1);(2)第3、4、5組依次各抽取人數(shù)為3、2、1;(3)

解析試題分析:(1)小矩形的面積表示此組的頻率,根據(jù)頻率和為1可求得的值。(2)先求第3、4、5組的頻率即頻率分布直方圖中各組小矩形的面積,根據(jù)求得各組的頻數(shù),然后求得此3組的頻數(shù)和。最后根據(jù)比例計(jì)算各組抽取人數(shù)。(3)記第3組的3名新生為,第4組的2名新生為,第5組的1名新生為,將從這6名新生中隨機(jī)抽取2名所辦含的基本事件一一例舉并得到基本事件總數(shù),其中第4組至少有一名的基本事件再一一例舉得到此事件包含的基本事件數(shù)。根據(jù)古典概型概率公式求其概率。
解:(1)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/42/e/sbnc41.png" style="vertical-align:middle;" />,                     1分
所以.                                                 2分
(2)依題意可知,
第3組的人數(shù)為,
第4組的人數(shù)為
第5組的人數(shù)為.
所以3、4、5組人數(shù)共有60.                                      3分
所以利用分層抽樣的方法在60名學(xué)生中抽取6名新生,分層抽樣的抽樣比為            4分
所以在第3組抽取的人數(shù)為人 ,
在第4組抽取的人數(shù)為人,
在第5組抽取的人數(shù)為人,                         7分
(3)記第3組的3名新生為,第4組的2名新生為,第5組的1名新生為.則從6名新生中抽取2名新生,共有:

,共有15種.           9分
其中第4組的2名新生至少有一名新生被抽中的有:
共有9種,                                                                  11分
則第4組至少有一名新生被抽中的概率為                   13分
考點(diǎn):1頻率分布直方圖;2分層抽樣;3古典概型概率。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
海關(guān)對同時(shí)從三個(gè)不同地區(qū)進(jìn)口的某種商品進(jìn)行抽樣檢測,從各地區(qū)進(jìn)口此種商品的數(shù)量(單位:件)如右表所示,工作人員用分層抽樣的方法從這些商品中共抽取6件進(jìn)行檢測

地區(qū)



數(shù)量
50
150
100
 
(1)求這6件樣品中來自各地區(qū)商品的數(shù)量;
(2)若在這6件樣品中隨機(jī)抽取2件送往甲機(jī)構(gòu)進(jìn)一步檢測,求這2件商品來自相同地區(qū)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

下表是某市從3月份中隨機(jī)抽取的天空氣質(zhì)量指數(shù)()和“”(直徑小于等于微米的顆粒物)小時(shí)平均濃度的數(shù)據(jù),空氣質(zhì)量指數(shù)()小于表示空氣質(zhì)量優(yōu)良.

日期編號










空氣質(zhì)量指數(shù)(










小時(shí)平均濃度(










 
(1)根據(jù)上表數(shù)據(jù),估計(jì)該市當(dāng)月某日空氣質(zhì)量優(yōu)良的概率;
(2)在上表數(shù)據(jù)中,在表示空氣質(zhì)量優(yōu)良的日期中,隨機(jī)抽取兩個(gè)對其當(dāng)天的數(shù)據(jù)作進(jìn)一步的分析,設(shè)事件為“抽取的兩個(gè)日期中,當(dāng)天‘’的小時(shí)平均濃度不超過”,求事件發(fā)生的概率;
(3)在上表數(shù)據(jù)中,在表示空氣質(zhì)量優(yōu)良的日期中,隨機(jī)抽取天,記為“小時(shí)平均濃度不超過的天數(shù),求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在數(shù)學(xué)趣味知識培訓(xùn)活動中,甲、乙兩名學(xué)生的5次培訓(xùn)成績?nèi)缦虑o葉圖所示:

(1)從甲、乙兩人中選擇1人參加數(shù)學(xué)趣味知識競賽,你會選哪位?請運(yùn)用統(tǒng)計(jì)學(xué)的知識說明理由;
(2) 從乙的5次培訓(xùn)成績中隨機(jī)選擇2個(gè),試求選到121分的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某研究機(jī)構(gòu)對高三學(xué)生的記憶力x和判斷力y進(jìn)行統(tǒng)計(jì)分析,得下表數(shù)據(jù)

x
6
8
10
12
y
2
3
5
6
(1)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程 
(2)試根據(jù)已求出的線性回歸方程,預(yù)測記憶力為9的同學(xué)的判斷力.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某市規(guī)定,高中學(xué)生三年在校期間參加不少于小時(shí)的社區(qū)服務(wù)才合格.教育部門在全市隨機(jī)抽取200位學(xué)生參加社區(qū)服務(wù)的數(shù)據(jù),按時(shí)間段,,,
,(單位:小時(shí))進(jìn)行統(tǒng)計(jì),其頻率分布直方圖如圖所示.
(Ⅰ)求抽取的200位學(xué)生中,參加社區(qū)服務(wù)時(shí)間不少于90小時(shí)的學(xué)生人數(shù),并估計(jì)
從全市高中學(xué)生中任意選取一人,其參加社區(qū)服務(wù)時(shí)間不少于90小時(shí)的概率;
(Ⅱ)從全市高中學(xué)生(人數(shù)很多)中任意選取3位學(xué)生,記為3位學(xué)生中參加社區(qū)服務(wù)時(shí)間不少于90小時(shí)的人數(shù).試求隨機(jī)變量的分布列和數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

一個(gè)盒子中裝有大量形狀大小一樣但重量不盡相同的小球,從中隨機(jī)抽取個(gè)作為樣本,稱出它們的重量(單位:克),重量分組區(qū)間為,,,由此得到樣本的重量頻率分布直方圖,如圖

(1)求的值;
(2)根據(jù)樣本數(shù)據(jù),試估計(jì)盒子中小球重量的平均值;
(注:設(shè)樣本數(shù)據(jù)第組的頻率為,第組區(qū)間的中點(diǎn)值為,則樣本數(shù)據(jù)的平均值為.)
(3)從盒子中隨機(jī)抽取個(gè)小球,其中重量在內(nèi)的小球個(gè)數(shù)為,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某化肥廠有甲、乙兩個(gè)車間包裝肥料,在自動包裝傳送帶上每隔30分鐘抽取一包產(chǎn)品,稱其重量(單位:kg),分別記錄抽查數(shù)據(jù)如下:
甲:102,101,99,98,103,98,99;
乙:110,115,90,85,75,115,110.
(1)這種抽樣方法是哪一種方法?
(2)試計(jì)算甲、乙車間產(chǎn)品重量的平均數(shù)與方差,并說明哪個(gè)車間產(chǎn)品較穩(wěn)定?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某興趣小組欲研究晝夜溫差大小與患感冒人數(shù)多少之間的關(guān)系,他們分別到氣象局與某醫(yī)院抄錄了1至6月份每月10號的晝夜溫差情況與因患感冒而就診的人數(shù),得到如下資料:

日期
1月
10日
2月
10日
3月
10日
4月
10日
5月
10日
6月
10日
晝夜溫差
x(℃)
10
11
13
12
8
6
就診人數(shù)
y(個(gè))
22
25
29
26
16
12
該興趣小組確定的研究方案是:先從這六組數(shù)據(jù)中選取2組,用剩下的4組數(shù)據(jù)求線性回歸方程,再用被選取的2組數(shù)據(jù)進(jìn)行檢驗(yàn).
(1)求選取的2組數(shù)據(jù)恰好是相鄰兩個(gè)月的概率.
(2)若選取的是1月與6月的兩組數(shù)據(jù),請根據(jù)2至5月份的數(shù)據(jù),求出y關(guān)于x的線性回歸方程=x+.
(3)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過2人,則認(rèn)為得到的線性回歸方程是理想的,試問該小組所得線性回歸方程是否理想?
(參考公式:==,=-).

查看答案和解析>>

同步練習(xí)冊答案