lim
△x→0
f(x0-2△x)-f(x0)
3△x
=(  )
A、
2
3
f′(x0
B、-
2
3
f′(x0
C、
3
2
f′(x0
D、-
3
2
f′(x0
考點:變化的快慢與變化率
專題:導數(shù)的概念及應(yīng)用
分析:把極限符號后面的代數(shù)式變形,結(jié)合極限運算求得答案.
解答: 解:
lim
△x→0
f(x0-2△x)-f(x0)
3△x
=-
2
3
lim
△x→0
f(x0-2△x)-f(x0)
-2△x
f(x0-2△x)-f(x0)
3△x
=-
2
3
f′(x0).
故選:B
點評:本題考查了極限運算,考查了導數(shù)的概念,關(guān)鍵是對導數(shù)概念的理解,是基礎(chǔ)的計算題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

在復平面內(nèi),復數(shù)z=-1+2i對應(yīng)的點位于( 。
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,△ABD是一直角邊為1的直角等腰三角形,平面圖形OBD是四分之一圓的扇形,點P在線段AB上,PQ⊥AB,且PQ交AD或交弧DB于點Q,設(shè)AP=x(0<x<2),圖中陰影部分這平面圖形APQ(或APQD)的面積為y,則函數(shù)y=f(x)的大致圖象是( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在數(shù)列{an}中,a1=4,a2=10,若{log3(an-1)}為等差數(shù)列,且Tn=
1
a2-a1
+
1
a3-a2
+…+
1
an+1-an
等于( 。
A、
1
12
(3n-1)
B、
1
4
(1-
1
3n
C、
1
4
(1-
1
3n+1
D、
1
12
(3n+1-1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

曲線C:f(x,y)=0關(guān)于直線l:x-y-3=0的對稱曲線C′的方程是( 。
A、f(x-3,y)=0
B、f(y+3,x)=0
C、f(y-3,x+3)=0
D、f(y+3,x-3)=0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在數(shù)列{an}中,已知a1=2,an=an-1+n(n≥2,n∈N*),則a4等于(  )
A、4B、11C、10D、8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)p:f(x)=2x2+mx+l在(0,+∞)內(nèi)單調(diào)遞增,q:m≥-5,則¬q是¬p的(  )
A、充分不必要條件
B、必要不充分條件
C、充分必要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

河東區(qū)近幾年來區(qū)經(jīng)濟總產(chǎn)值逐年遞增,2010年經(jīng)濟總產(chǎn)值為a億元,2012年經(jīng)濟總產(chǎn)值為a+2b億元(其中a>b>0),則河東區(qū)在2010年到2012年兩年的平均增長率為( 。
A、
b
a+b
B、
a2+2ab
-a
a
C、
b
a
D、
a+2b
a

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

解方程:x3+x2=1.

查看答案和解析>>

同步練習冊答案