考點(diǎn):數(shù)列的求和,數(shù)列遞推式
專題:等差數(shù)列與等比數(shù)列
分析:(1)由a
n=
+n-1,可得
nan=Sn+n2-n.利用“當(dāng)n≥2時,a
n=S
n-S
n-1”可得a
n-a
n-1=2,即可證明;
(2)由(1)可得a
n=2n-1.
5an=5
2n-1,因此數(shù)列{5
an}是首項(xiàng)為5,公比為25的等比數(shù)列.再利用等比數(shù)列的前n項(xiàng)和公式即可得出.
解答:
(1)證明:∵a
n=
+n-1,∴
nan=Sn+n2-n.
當(dāng)n≥2時,
(n-1)an-1=Sn-1+(n-1)2-(n-1),
∴na
n-(n-1)a
n-1=a
n+n
2-n-[(n-1)
2-(n-1)],
化為a
n-a
n-1=2,
∴數(shù)列{a
n}為等差數(shù)列,首項(xiàng)為1,公差為2.
(2)解:由(1)可得a
n=1+2(n-1)=2n-1.
∴
5an=5
2n-1,
∴數(shù)列{5
an}是首項(xiàng)為5,公比為25的等比數(shù)列.
∴數(shù)列{5
an}的前n項(xiàng)和T
n=
=
(25n-1).
點(diǎn)評:本題考查了遞推式的應(yīng)用、等差數(shù)列與等比數(shù)列的定義通項(xiàng)公式及其前n項(xiàng)和公式,考查了推理能力與計(jì)算能力,屬于中檔題.