【答案】
分析:(1)令f′(x)=g′(x),進(jìn)而求得x,進(jìn)而可知函數(shù)f(x)的圖象與函數(shù)g(x)的圖象的切點(diǎn),把切點(diǎn)代入f(x)求得b,進(jìn)而求得函數(shù)F(x)的解析式,進(jìn)而對(duì)函數(shù)進(jìn)行求導(dǎo),使其為0求得x,進(jìn)而推斷出函數(shù)F(x)的極大值和極小值.
(2)首先根據(jù)(1)中函數(shù)F(x)的單調(diào)性畫出函數(shù)的草圖,作函數(shù)y=k的圖象,進(jìn)而根據(jù)當(dāng)y=F(x)的圖象與函數(shù)y=k的圖象有三個(gè)交點(diǎn)時(shí),關(guān)于x的方程F(x)=k恰有三個(gè)不等的實(shí)數(shù)根.最后根據(jù)圖象確定k的范圍.
解答:解:(1)依題意,令f′(x)=g′(x),得1=2x+3,故x=-1
函數(shù)f(x)的圖象與函數(shù)g(x)的圖象的切點(diǎn)為(-1,0)
將切點(diǎn)坐標(biāo)代入函數(shù)f(x)=x+b可得b=1
(或:依題意得f(x))=g(x),
即x
2+2x+2-b=0有唯一實(shí)數(shù)解
故△=2
2-4(2-b)=0,即b=1
∴F(x)=(x+1)(x
2+2x+2)=x
3+4x
2+5x+2
故F′(x)=0,解得x=-1或x=-
.
列表如下:
從上表可知
處取得極小值.
(2)由(1)可知涵數(shù)y=F(x)大致圖象如圖所示.
作函數(shù)y=k的圖象,當(dāng)y=F(x)的圖象與函數(shù)y=k的圖象有三個(gè)交點(diǎn)時(shí),
關(guān)于x的方程F(x)=k恰有三個(gè)不等的實(shí)數(shù)根.結(jié)合圖形可知
.
點(diǎn)評(píng):本題主要考查了函數(shù)與方程的應(yīng)用,導(dǎo)函數(shù)求函數(shù)極值.考查了學(xué)生綜合分析問題和解決的能力.