10.$\int_0^π$(1+cosx)dx=π.

分析 首先求出被積函數(shù)的原函數(shù),代入積分上限和下限計(jì)算即可.

解答 解:原式=(x+sinx)|${\;}_{0}^{π}$=π;
故答案為:π.

點(diǎn)評(píng) 本題考查了定積分的計(jì)算;正確找出被積函數(shù)的原函數(shù)是解答的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知f(x)為奇函數(shù),當(dāng)x<0時(shí),f(x)=ln(-x)-3x,則曲線y=f(x)在(1,f(1))處的切線方程為4x+y-1=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知直線x=1上的點(diǎn)P到直線x-y=0的距離為$\sqrt{2}$,則點(diǎn)P的坐標(biāo)為( 。
A.(1,-1)B.(1,3)C.(1,-2)或(1,2)D.(1,-1)或(1,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.如圖,正方形ABCD與梯形AMPD所在的平面互相垂直,AD⊥PD,MA∥PD,MA=AD=$\frac{1}{2}$PD=1.
(1)求證:MB∥平面PDC;
(2)求二面角M-PC-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.A是拋物線y2=2px(p>0)上的一點(diǎn),F(xiàn)為拋物線的焦點(diǎn),O為坐標(biāo)原點(diǎn),當(dāng)|AF|=4時(shí),∠OFA=120°,則拋物線的準(zhǔn)線方程是(  )
A.x=-1B.y=-1C.x=-2D.y=-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.張老師 上班,有路線①與路線②兩條路線可供選擇.
路線①:沿途有A,B兩處獨(dú)立運(yùn)行的交通信號(hào)燈,且兩處遇到綠燈的概率依次為$\frac{1}{2},\frac{2}{3}$,若A處遇到紅燈或黃燈,則導(dǎo)致延誤時(shí)間2分鐘;若B處遇到紅燈或黃燈,則導(dǎo)致延誤時(shí)間3分鐘;若兩處都遇到綠燈,則全程所花時(shí)間為20分鐘.
路線②:沿途有a,b兩處獨(dú)立運(yùn)行的交通信號(hào)燈,且兩處遇到綠燈的概率依次為$\frac{3}{4}\frac{2}{5}$,若a處遇到紅燈或黃燈,則導(dǎo)致延誤時(shí)間8分鐘;若b處遇到紅燈或黃燈,則導(dǎo)致延誤時(shí)間5分鐘;若兩處都遇綠燈,則全程所化時(shí)間為15分鐘.
(1)若張老師選擇路線①,求他20分鐘能到校的概率;
(2)為使張老師日常上班途中所花時(shí)間較少,你建議張老師選擇哪條路線?說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.設(shè)a,b∈R,則“a+b≥4”是“a≥2且b≥2”的(  )
A.充分而不必要條件B.必要而不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.在△ABC中,角A、B、C所對(duì)的邊分別為a、b、c.已知acosAcosB-bsin2A-ccosA=2bcosB.
(1)求B;
(2)若$b=\sqrt{7}a,{S_{△ABC}}=2\sqrt{3}$,求a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.lg2+lg5=1;${2^{{{log}_2}3}}-{8^{\frac{1}{3}}}$=1.

查看答案和解析>>

同步練習(xí)冊(cè)答案