已知t是f(x)=2-x-log
1
2
x的零點(diǎn),x0>t,則f(x0)的值滿足( 。
A、f(x0)=0
B、f(x0)>0
C、f(x0)<0
D、f(x0)的符號(hào)不確定
分析:判斷函數(shù)的單調(diào)性,利用函數(shù)零點(diǎn)的定義進(jìn)行判斷即可得到結(jié)論.
解答:精英家教網(wǎng)解:由是f(x)=2-x-log
1
2
x=0得2-x=log
1
2
x,
設(shè)函數(shù)y=2-x和y=log
1
2
x,
分別作出兩個(gè)函數(shù)的圖象如圖,由圖象可知兩個(gè)函數(shù)的交點(diǎn)有2個(gè),即函數(shù)的零點(diǎn)t由2個(gè),
∴當(dāng)x0>t時(shí),無法確定f(x0)與f(t)=0的大小,
故選:D.
點(diǎn)評(píng):本題主要考查函數(shù)零點(diǎn)的應(yīng)用,利用條件作出兩個(gè)函數(shù)的圖象是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=f(x)是定義在R上的偶函數(shù),當(dāng)x≥0時(shí),f(x)=x3+1;
(1)求y=f(x)的解析式;
(2)求F(x)=f(x)(x∈[t,t+1])的最小值g(t).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知偶函數(shù)y=f(x)在區(qū)間[-1,0]上是增函數(shù),且滿足f(1-x)+f(1+x)=0,下列判斷中錯(cuò)誤的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

我們把同時(shí)滿足下列兩個(gè)性質(zhì)的函數(shù)稱為“和諧函數(shù)”:
①函數(shù)在整個(gè)定義域上是單調(diào)增函數(shù)或單調(diào)減函數(shù);
②在函數(shù)的定義域內(nèi)存在區(qū)間[p,q](p<q),使得函數(shù)在區(qū)間[p,q]上的值域?yàn)閇p2,q2].
(1)已知冪函數(shù)f(x)的圖象經(jīng)過點(diǎn)(2,2),判斷g(x)=f(x)+2(x∈R)是否是和諧函數(shù)?
(2)判斷函數(shù)h(x)=
1-x2(x≥1)
2-2x(x<1)
是否是和諧函數(shù)?
(3)若函數(shù)φ(x)=
x2-1
+t(1≤x≤
6
2
)
是和諧函數(shù),求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•浦東新區(qū)二模)已知函數(shù)y=f(x),x∈D,如果對(duì)于定義域D內(nèi)的任意實(shí)數(shù)x,對(duì)于給定的非零常數(shù)m,總存在非零常數(shù)T,恒有f(x+T)>m•f(x)成立,則稱函數(shù)f(x)是D上的m級(jí)類增周期函數(shù),周期為T.若恒有f(x+T)=m•f(x)成立,則稱函數(shù)f(x)是D上的m級(jí)類周期函數(shù),周期為T.
(1)已知函數(shù)f(x)=-x2+ax是[3,+∞)上的周期為1的2級(jí)類增周期函數(shù),求實(shí)數(shù)a的取值范圍;
(2)已知 T=1,y=f(x)是[0,+∞)上m級(jí)類周期函數(shù),且y=f(x)是[0,+∞)上的單調(diào)遞增函數(shù),當(dāng)x∈[0,1)時(shí),f(x)=2x,求實(shí)數(shù)m的取值范圍;
(3)下面兩個(gè)問題可以任選一個(gè)問題作答,如果你選做了兩個(gè),我們將按照問題(Ⅰ)給你記分.
(Ⅰ)已知當(dāng)x∈[0,4]時(shí),函數(shù)f(x)=x2-4x,若f(x)是[0,+∞)上周期為4的m級(jí)類周期函數(shù),且y=f(x)的值域?yàn)橐粋(gè)閉區(qū)間,求實(shí)數(shù)m的取值范圍;
(Ⅱ)是否存在實(shí)數(shù)k,使函數(shù)f(x)=coskx是R上的周期為T的T級(jí)類周期函數(shù),若存在,求出實(shí)數(shù)k和T的值,若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案