已知棱長為l的正方體中,E,F(xiàn),M分別是AB、AD、的中點,又P、Q分別在線段上,且,設(shè)面面MPQ=,則下列結(jié)論中不成立的是(    )

A.面ABCD
B.AC
C.面MEF與面MPQ不垂直
D.當x變化時,不是定直線
D

試題分析:解:連結(jié),交于點交于點
由正方體的性質(zhì)知,
因為的中點,所以
因為,所以
所以,所以平面,平面,
面MPQ=, 平面,所以,而平面,平面,
所以,面ABCD ,所以選項A正確;
,,所以AC,所以選項B正確;
,則
所以,,所以平面,過直線與平面垂直的平面只能有一個,所以面MEF與面MPQ不垂直,所以選項C是正確的;
因為是定點,過直線外一點有且只有一條直線與已知直線平行,所以直線是唯一的,故選項D不正確.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,直四棱柱中,,,,,,E為CD上一點,,

(1)證明:BE⊥平面;
(2)求點到平面的距離。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,四邊形ABCD是菱形,四邊形MADN是矩形,平面MADN平面ABCD,E,F(xiàn)分別為MA,DC的中點,求證:

(1)EF//平面MNCB;
(2)平面MAC平面BND.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在四棱錐P-ABCD中,底面ABCD為菱形,,Q為AD的中點.

(1)若PA=PD,求證:平面平面PAD;
(2)點M在線段上,PM=tPC,試確定實數(shù)t的值,使PA//平面MQB.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知、是兩條直線,、是兩個平面,給出下列命題:①若,,則;②若平面上有不共線的三點到平面的距離相等,則;③若為異面直線,,,,則.其中正確命題的個數(shù)(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知在四面體ABCD中,E、F分別是AC、BD的中點,若CD=2AB=4,EFAB,則EF與CD所成的角為(  。

A.        B.      C.        D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

如圖,正方形ACDE與等腰直角三角形ACB所在的平面互相垂直,且AC=BC=2,∠ACB=90°,F,G分別是線段AE,BC的中點,則AD與GF所成的角的余弦值為( )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

在四棱錐P—ABCD中,底面ABCD是正方形,側(cè)棱PD⊥平面ABCD,AB=PD=a.點E為側(cè)棱PC的中點,又作DF⊥PB交PB于點F.則PB與平面EFD所成角為(    )
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

設(shè)是兩條不同的直線,是三個不同的平面,給出下列四個命題:
①若,則;②若,則
③若,則;   ④若,則;
其中正確命題有_____________.(填上你認為正確命題的序號)

查看答案和解析>>

同步練習冊答案