若f(x)是定義在(-∞,0)∪(0,+∞)上的奇函數(shù),且當(dāng)x>0時(shí),f(x)=(
1
2
)x+1
,則f(x)的圖象大致是( 。
A.B.C.D.
∵當(dāng)x>0時(shí),f(x)=(
1
2
)x+1
,
∴當(dāng)x>0時(shí),函數(shù)f(x)單調(diào)遞增,排除A.
又當(dāng)x>0時(shí),f(x)∈(1,2),排除C,D.
故選:B.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)f(x)=
px2+2
-3x
,且f(2)=-
5
3

(1)求函數(shù)f(x)的解析式;
(2)判斷f(x)的奇偶性;
(3)判斷函數(shù)f(x)在區(qū)間(0,1)上的單調(diào)性,并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知f(x)是單調(diào)遞增的一次函數(shù),且f[f(x)]=4x+3.
(1)求f(x)的解析式;
(2)若集合A={x|f(x)•f(x+1)≤0且x∈Z},求集合A.
(3)若g(x)是定義在R的奇函數(shù),且x<0時(shí),g(x)=f(x),求g(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)f(x)=x+
4
x

(1)判斷f(x)的奇偶性;
(2)判斷f(x)在(0,2]和[2,+∞)的單調(diào)性,并用定義證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

設(shè)f(x)是連續(xù)的偶函數(shù),且當(dāng)x>0時(shí),f(x)是單調(diào)的函數(shù),則滿足f(x)=f(
x+3
x+4
)
的所有的x的和為_(kāi)_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知定義在R上的奇函數(shù)f(x)的圖象經(jīng)過(guò)點(diǎn)(2,2),且當(dāng)x∈(0,+∞)時(shí),f(x)=loga(x+2).
(1)求a的值;
(2)求函數(shù)f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知函數(shù)f(x)為奇函數(shù),x>0時(shí)為增函數(shù)且f(2)=0,則{x|f(x-2)>0}=( 。
A.{x|0<x<2或x>4}B.{x|x<0或x>4}
C.{x|x<0或x>6}D.{x|x<-2或x>2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)f(x)=x3-ax,g(x)=
1
2
x2-lnx-
5
2

(1)若對(duì)一切x∈(0,+∞),有不等式f(x)≥2x•g(x)-x2+5x-3恒成立,求實(shí)數(shù)a的取值范圍;
(2)記G(x)=
1
2
x2-
5
2
-g(x)
,求證:G(x)>
1
ex
-
2
ex

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知函數(shù)則下列結(jié)論正確的是(  )
A.是偶函數(shù)B.是增函數(shù)
C.是周期函數(shù)D.的值域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053735866505.png" style="vertical-align:middle;" />

查看答案和解析>>

同步練習(xí)冊(cè)答案