設,.
(Ⅰ)當時,求曲線在處的切線的方程;
(Ⅱ)如果存在,使得成立,求滿足上述條件的最大整數(shù);
(Ⅲ)如果對任意的,都有成立,求實數(shù)的取值范圍.
(1);(2);(3).
【解析】
試題分析:本題考查導數(shù)的運算,利用導數(shù)研究函數(shù)的單調性、最值等基礎知識,考查函數(shù)思想和轉化思想,考查綜合分析和解決問題的能力.第一問,將代入得到解析式,求將代入得到切線的斜率,再將代入到中得到切點的縱坐標,利用點斜式求出切線方程;第二問,先將問題轉化為,進一步轉化為求函數(shù)的最大值和最小值問題,對求導,通過畫表判斷函數(shù)的單調性和極值,求出最值代入即可;第三問,結合第二問的結論,將問題轉化為恒成立,進一步轉化為恒成立,設出新函數(shù),求的最大值,所以即可.
試題解析:(1)當時,,,,,
所以曲線在處的切線方程為; 2分
(2)存在,使得成立等價于:,
考察, ,
|
|||||
遞減 |
極小值 |
遞增 |
由上表可知:,
,
所以滿足條件的最大整數(shù); 7分
(3)當時,恒成立等價于恒成立,
記,,,
記,,由于,
,所以在上遞減,
當時,,時,,
即函數(shù)在區(qū)間上遞增,在區(qū)間上遞減,
所以,所以.
考點:1.利用導數(shù)求切線方程;2.利用導數(shù)求函數(shù)最值;3.利用導數(shù)判斷函數(shù)的單調性和極值.
科目:高中數(shù)學 來源:2012-2013學年江西省吉安市西路片七校高三(上)聯(lián)考數(shù)學試卷(理科)(解析版) 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源:2012年山東省高考數(shù)學模擬預測卷2(理科)(解析版) 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源:2011-2012學年廣東揭陽一中、潮州金山中學高三第三次模擬考試理科數(shù)學試卷(解析版) 題型:解答題
(14分)設函數(shù),其中。
⑴當時,判斷函數(shù)在定義域上的單調性;
⑵求函數(shù)的極值點;
⑶證明對任意的正整數(shù),不等式成立。
查看答案和解析>>
科目:高中數(shù)學 來源:2013屆安徽省高二下學期期中質量檢測理科數(shù)學試卷(解析版) 題型:解答題
設,
(1)當時,求曲線在處的切線方程
(2)如果對任意的,恒有成立,求實數(shù)的取值范圍
查看答案和解析>>
科目:高中數(shù)學 來源:2010-2011學年吉林省高三第二次模擬考試理科數(shù)學卷 題型:解答題
(本小題滿分10分)
設函數(shù)
(1)當時,求函數(shù)的定義域;
(2)若函數(shù)的定義域為R,試求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com