已知|
a
|=1,|
b
|=2,且
a
+
b
a
垂直,則
a
b
的夾角是
 
分析:根據(jù)向量垂直以及向量數(shù)量積的關(guān)系建立方程即可求出向量的夾角.
解答:解:∵|
a
|=1,|
b
|=2,且
a
+
b
a
垂直,
(
a
+
b
)•
a
=
a2
+
a
b
=0
,
a
b
=-
a2
=-1
,
∴cos<
a
,
b
>=
a
b
|
a
||
b
|
=
-1
1×2
=-
1
2

∴<
a
b
>=
3

故答案為:
3
點(diǎn)評(píng):本題主要考查平面向量數(shù)量積的應(yīng)用,根據(jù)向量垂直建立方程關(guān)系求出
a
b
是解決本題的關(guān)鍵.要求熟練掌握相應(yīng)的計(jì)算公式.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知|
a
|=1
|
b
|=
2
a
⊥(
a
-
b
)
,則向量
a
與向量
b
的夾角是( 。
A、30°B、45°
C、90°D、135°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知|
a|
=1
,|
b
|=2
,
a
⊥(
a
+
b
)
,則
a
b
夾角的度數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知|
a
|=1,|
b
|=
3
,且
a
b
的夾角為
π
6
,則|
a
-
b
|的值為
1
1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知|
a
|=1,|
b
|=2
,向量
a
b
的夾角為
3
,
c
=
a
+2
b
,則
c
的模等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)△ABC的內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,已知a=1,b=2.
(1)若sin
A
2
=
1
4
,求sinB的值;
(2)若cosC=
1
4
,求△ABC的周長.

查看答案和解析>>

同步練習(xí)冊(cè)答案