在正方體ABCD—A1B1C1D1中,P、Q、R分別為AA1、AB、BC的中點,求二面角,P-QR-A的大。

答案:
解析:

  如圖所示

  過A作AH⊥QR于H,連結PH,則∠PHA為二面角P-QR-A的平面角,設AB=a,則AP=,AH=

  ∴tan∠PHA=

  ∴二面角P—QR—A的大小為arctan


練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

16、在正方體ABCD-A′B′C′D′中,過對角線BD′的一個平面交AA′于E,交CC′于F,則
①四邊形BFD′E一定是平行四邊形;
②四邊形BFD′E有可能是正方形;
③四邊形BFD′E在底面ABCD內(nèi)的投影一定是正方形;
④平面BFD′E有可能垂直于平面BB′D.
以上結論正確的為
①③④
.(寫出所有正確結論的編號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在正方體ABCD-A′B′C′D′中,E為D′C′的中點,則二面角E-AB-C的大小為
45°
45°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在正方體ABCD-A′B′C′D′中,E,F(xiàn)分別是AB′,BC′的中點. 
(1)若M為BB′的中點,證明:平面EMF∥平面ABCD.
(2)求異面直線EF與AD′所成的角.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖在正方體ABCD-A  1B1C1D1中,O是底面ABCD的中心,B1H⊥D1O,H為垂足,則B1H與平面AD1C的位置關系是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在正方體ABCD-A′B′C′D′中,過對角線BD′的一個平面交棱AA′于E,交棱CC′于F,則:
①四邊形BFD′E一定是平行四邊形;
②四邊形BFD′E有可能是正方形;
③四邊形BFD′E有可能是菱形;
④四邊形BFD′E有可能垂直于平面BB′D.
其中所有正確結論的序號是
 

查看答案和解析>>

同步練習冊答案