已知函數(shù)f(x)=x3+(1-a) x2-a(a+2)x+b(a,b∈R).
(I)若函數(shù)f(x)的圖象過原點,且在原點處的切線斜率是-3,求a,b的值;
(Ⅱ)若函數(shù)f(x)在區(qū)間(-1,1)上不單調(diào),求a的取值范圍.
【答案】分析:(Ⅰ)先求導數(shù):f'(x)=3x2+2(1-a)x-a(a+2),再利用導數(shù)求出在x=-1處的導函數(shù)值,再結合導數(shù)的幾何意義即可求出切線的斜率.列出關于a,b等式解之,從而問題解決.
(Ⅱ)根據(jù)題中條件:“函數(shù)f(x)在區(qū)間(-1,1)不單調(diào),”等價于“導函數(shù)f'(x)在(-1,1)既能取到大于0的實數(shù),又能取到小于0的實數(shù)”,由于導函數(shù)是一個二次函數(shù),有兩個根,故問題可以轉化為到少有一根在在區(qū)間(-1,1)內(nèi),先求兩根,再由以上關系得到參數(shù)的不等式,解出兩個不等式的解集,求其并集即可;
解答:解析:(Ⅰ)由題意得f'(x)=3x2+2(1-a)x-a(a+2)
,
解得b=0,a=-3或a=1
(Ⅱ)函數(shù)f(x)在區(qū)間(-1,1)不單調(diào),等價于
導函數(shù)f'(x)[是二次函數(shù)],在(-1,1有實數(shù)根但無重根.
∵f'(x)=3x2+2(1-a)x-a(a+2)=(x-a)[3x+(a+2)],
令f'(x)=0得兩根分別為x=a與x=
若a=即a=-時,此時導數(shù)恒大于等于0,不符合題意,
當兩者不相等時即a≠-
有a∈(-1,1)或者∈(-1,1)
解得a∈(-5,1)且a≠-
綜上得參數(shù)a的取值范圍是(-5,-)∪(-,1)
點評:本小題主要考查函數(shù)單調(diào)性的應用、函數(shù)奇偶性的應用、不等式的解法等基礎知識,考查運算求解能力,考查數(shù)形結合思想、化歸與轉化思想.屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分圖象如圖所示,則f(x)的解析式是( 。
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•深圳一模)已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•上海模擬)已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數(shù)m的取值范圍;
(3)設k、c>0,當a=k2,b=(k+c)2時,記f(x)=f1(x);當a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學 來源:上海模擬 題型:解答題

已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數(shù)m的取值范圍;
(3)設k、c>0,當a=k2,b=(k+c)2時,記f(x)=f1(x);當a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學 來源:深圳一模 題型:解答題

已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

同步練習冊答案