已知函數(shù)
(Ⅰ)若曲線在點處的切線與直線垂直,求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若對于都有成立,試求的取值范圍;
(Ⅲ)記.當時,函數(shù)在區(qū)間上有兩個零點,求實數(shù)的取值范圍.
(Ⅰ)的單調(diào)增區(qū)間是,單調(diào)減區(qū)間是(Ⅱ)(Ⅲ)

試題分析:(Ⅰ)定義域,
得增區(qū)間得減區(qū)間
(Ⅱ),,所以函數(shù)最小值為,要滿足恒成立,只需
(Ⅲ)
,減區(qū)間為,增區(qū)間為,函數(shù)在區(qū)間上有兩個零點,所以
代入解得
點評:導數(shù)的幾何意義:函數(shù)在某一點處的導數(shù)值等于該點處的切線斜率;求函數(shù)的增減區(qū)間只需解導數(shù)大于零小于零的不等式;第二問中將不等會恒成立問題,第三問中將函數(shù)零點問題都可轉(zhuǎn)化為求函數(shù)的最值問題,這種轉(zhuǎn)化是函數(shù)題目常用的求解思路
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù) .
(1)若,求的單調(diào)區(qū)間及的最小值;
(2)若,求的單調(diào)區(qū)間;
(3)試比較的大小,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知函數(shù),對任意,都有,則函數(shù)的最大值與最小值之和是         .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

函數(shù)的單調(diào)遞減區(qū)間為
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

,這三個函數(shù)中,當時,
使恒成立的函數(shù)的個數(shù)是( 。 
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

,,則,,從小到大的順序為        。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知函數(shù)為減函數(shù),則a的取值范圍是          

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)
(1)求函數(shù)在點處的切線方程;
(2)求函數(shù)單調(diào)增區(qū)間;
(3)若存在,使得是自然對數(shù)的底數(shù)),求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知函數(shù),則=(    )
A.B.C.D.

查看答案和解析>>

同步練習冊答案