【題目】某市隨機抽取部分企業(yè)調(diào)查年上繳稅收情況(單位:萬元),將所得數(shù)據(jù)繪制成頻率分布直方圖(如圖),年上繳稅收范圍是[0,100],樣本數(shù)據(jù)分組為[0,20),[20,40),[40,60),[60,80),[80,100]. (I)求直方圖中x的值;
(Ⅱ)如果年上繳稅收不少于60萬元的企業(yè)可申請政策優(yōu)惠,若共抽取企業(yè)1200個,試估計有多少企業(yè)可以申請政策優(yōu)惠;
(Ⅲ)從企業(yè)中任選4個,這4個企業(yè)年上繳稅收少于20萬元的個數(shù)記為X,求X的分布列和數(shù)學(xué)期望.(以直方圖中的頻率作為概率)

【答案】解:(I)由直方圖可得:20×(x+0.025+0.0065+0.003×2)=1, 解得x=0.0125.
(II)企業(yè)繳稅收不少于60萬元的頻率=0.003×2×20=0.12,
∴1200×0.12=144.
∴1200個企業(yè)中有144個企業(yè)可以申請政策優(yōu)惠.
(III)X的可能取值為0,1,2,3,4.
由(I)可得:某個企業(yè)繳稅少于20萬元的概率=0.0125×20=0.25=
因此X~B(4, ),
∴分布列為P(X=k)= ,(k=0,1,2,3,4),
∴E(X)=4× =1
【解析】(I)由直方圖可得:20×(x+0.025+0.0065+0.003×2)=1,解得x即可.(II)企業(yè)繳稅收不少于60萬元的頻率=0.003×2×20=0.12,即可得出1200個企業(yè)中有1200×0.12個企業(yè)可以申請政策優(yōu)惠.(III)X的可能取值為0,1,2,3,4.由(I)可得:某個企業(yè)繳稅少于20萬元的概率=0.0125×20= .因此X~B(4, ),可得分布列為P(X=k)= ,(k=0,1,2,3,4),再利用E(X)=4× 即可得出.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=2cos2x+2 sinxcosx+a,且當(dāng)x∈[0, ]時,f(x)的最小值為2.
(1)求a的值,并求f(x)的單調(diào)遞增區(qū)間;
(2)先將函數(shù)y=f(x)的圖象上的點縱坐標(biāo)不變,橫坐標(biāo)縮小到原來的 ,再將所得圖象向右平移 個單位,得到函數(shù)y=g(x)的圖象,求方程g(x)=4在區(qū)間[0, ]上所有根之和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線l的方程為x+y+3=0,以直角坐標(biāo)系中x軸的正半軸為極軸的極坐標(biāo)系中,圓M的極坐標(biāo)方程為ρ=2sinθ. (Ⅰ)寫出圓M的直角坐標(biāo)方程及過點P(2,0)且平行于l的直線l1的參數(shù)方程;
(Ⅱ)設(shè)l1與圓M的兩個交點為A,B,求 的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}滿足 ,且{a2n1}是遞減數(shù)列,{a2n}是遞增數(shù)列,則5﹣6a10=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=|x﹣a|,若不等式f(x)≤3的解集為{|x|﹣1≤x≤5}. (Ⅰ)求實數(shù)a的值:
(Ⅱ)若不等式f(3x)+f(x+3)≥m對一切實數(shù)x恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題正確的是(
A.?x0∈R,sinx0+cosx0=
B.?x≥0且x∈R,2x>x2
C.已知a,b為實數(shù),則a>2,b>2是ab>4的充分條件
D.已知a,b為實數(shù),則a+b=0的充要條件是 =﹣1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某品牌的汽車4S店,對最近100例分期付款購車情況進行統(tǒng)計,統(tǒng)計結(jié)果如表所示,已知分9期付款的頻率為0.4;該店經(jīng)銷一輛該品牌的汽車.若顧客分3期付款,其利潤為1萬元;分6期或9期付款,其利潤為2萬元;分12期付款,其利潤為3萬元.

付款方式

分3期

分6期

分9期

分12期

頻數(shù)

20

20

a

b


(1)若以表中計算出的頻率近似替代概率,從該店采用分期付款購車的顧客(數(shù)量較大)中隨機抽取3位顧客,求事件A:“至多有1位采用分6期付款”的概率P(A);
(2)按分層抽樣的方式從這100位顧客中抽出5人,再從抽出的5人中隨機抽取3人,記該店在這3人身上賺取的總利潤為隨機變量η,求η的分布列及數(shù)學(xué)期望E(η).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xoy中,曲線C1的參數(shù)方程為 (θ為參數(shù)),以坐標(biāo)原點O為極點,x軸的正半軸為極軸,與直角坐標(biāo)系xoy取相同的單位長度建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρ=2cosθ﹣4sinθ.
(1)化曲線C1 , C2的方程為普通方程,并說明它們分別表示什么曲線;
(2)設(shè)曲線C2與x軸的一個交點的坐標(biāo)為P(m,0)(m>0),經(jīng)過點P作斜率為1的直線,l交曲線C2于A,B兩點,求線段AB的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C: =1(a>b>0)過點P(1, ),離心率為
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)F1、F2分別為橢圓C的左、右焦點,過F2的直線l與橢圓C交于不同兩點M,N,記△F1MN的內(nèi)切圓的面積為S,求當(dāng)S取最大值時直線l的方程,并求出最大值.

查看答案和解析>>

同步練習(xí)冊答案