14.不等式$\frac{3x-1}{x-2}$≤0的解集為( 。
A.{x|$\frac{1}{3}$≤x≤2}B.{x|x>2或x≤$\frac{1}{3}$}C.{x|$\frac{1}{3}$≤x<2}D.{x|x<2}

分析 根據(jù)題意,把不等式化為等價的不等式,求出解集即可.

解答 解:不等式$\frac{3x-1}{x-2}$≤0等價于(3x-1)(x-2)≤0,且x-2≠0,
解得$\frac{1}{3}$≤x<2,
故選:C

點評 本題考查了分式不等式的解法與應(yīng)用問題,解題的關(guān)鍵是把不等式化為等價的不等式,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若直線y=kx+2(k∈R)與橢圓x2+$\frac{{y}^{2}}{m}$=1恒有交點,則實數(shù)m的取值范圍為( 。
A.(4,+∞)B.[4,+∞)C.(-∞,4)D.(-∞,4]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知數(shù)列{an}的前n項和為Sn,且Sn>0,若a1=6,a2=-2,對于n∈N*,有S2n-12=S2nS2n+2,2S2n+2=S2n-1+S2n+1
,則$\frac{1}{{S}_{1}}$+$\frac{1}{{S}_{3}}$+$\frac{1}{{S}_{5}}$+…+$\frac{1}{{S}_{2017}}$=$\frac{1009}{2022}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知拋物線C:y2=4x的焦點是F,過點F的直線與拋物線C相交于P、Q兩點,且點Q在第一象限,若$3\overrightarrow{PF}=\overrightarrow{FQ}$,則直線PQ的斜率是(  )
A.$\frac{{\sqrt{3}}}{3}$B.1C.$\sqrt{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.一次測試中,每位考生要在8道測試題中隨機抽出3道題問答,答對其中兩道題即為合格.甲、乙、丙三人分別參加測試,每個人參加測試都是相互獨立的,且三人都恰好會答8道題中的3道題.
(1)求甲考生在一次測試中合格的概率;
(2)求三個人中恰有一人合格的概率;
(3)記X表示三個人參加測試獲得合格的冉姝,寫出X的分布列并求數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.函數(shù)y=xlnx在(0,5)上是( 。
A.單調(diào)增函數(shù)
B.單調(diào)減函數(shù)
C.在$({0,\frac{1}{e}})$上是增函數(shù),在$({\frac{1}{e},5})$上是減函數(shù)
D.在$({0,\frac{1}{e}})$上是減函數(shù),在$({\frac{1}{e},5})$上是增函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知命題P:“?x∈[0,1],a≤ex”,命題q:“?x∈R,x2+4x+a=0”,若命題“p∧q”是真命題,則實數(shù)a的取值范圍是(-∞,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.若曲線y=x2+ax+b在點(0,b)處的切線方程是x-y+1=0,則a=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知sinα=$\frac{1}{5}$,α∈($\frac{π}{2}$,π),則sin2α的值為$-\frac{4}{25}\sqrt{6}$.

查看答案和解析>>

同步練習(xí)冊答案