(1)當(dāng)n=1時(shí),S1=a1顯然成立;
(2)假設(shè)當(dāng)n=k時(shí),公式成立,即Sk=ka1+,
當(dāng)n=k+1時(shí),Sk+1 =a1+a2+…+ak+ak+1 =a1+(a1+d)+(a1+2d)+…+[a1+(k-1)d]+(a1+kd)=(k+1)a1+(d+2d+…+kd)
=(k+1)a1+ d=(k+1)a1+ d,
∴n=k+1時(shí)公式成立.
由(1)(2)知,對n∈N*時(shí),公式都成立.
以上證明錯(cuò)誤的是( )
A.當(dāng)n取第一個(gè)值1時(shí),證明不對
B.歸納假設(shè)的寫法不對
C.從n=k到n=k+1時(shí)的推理中未用歸納假設(shè)
D.從n=k到n=k+1時(shí)的推理有錯(cuò)誤
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
n4+n2 |
2 |
A、k2+1 | ||
B、(k+1)2 | ||
C、
| ||
D、(k2+1)+(k2+2)+(k2+3)+…+(k+1)2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
1 |
2 |
1 |
3 |
1 |
2n-1 |
A、1+
| ||||||
B、1+
| ||||||
C、1+
| ||||||
D、1+
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
1-an+2 | 1-a |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
1 |
2 |
1 |
22 |
1 |
22n |
1 |
22n |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
1-xn+2 |
1-x |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com