12.設(shè)f(x)=$\left\{\begin{array}{l}{-x,x≤0}\\{lo{g}_{2}x,x>0}\end{array}\right.$,則函數(shù)y=f(f(x))的零點(diǎn)之和為(  )
A.0B.1C.2D.4

分析 求出f(x)的零點(diǎn)為0,1,再解方程f(x)=0和f(x)=1得出f(f(x))的所有零點(diǎn).

解答 解:令f(x)=0得x=0或x=1,
∵f(f(x))=0,
∴f(x)=0或f(x)=1,
由以上過程可知f(x)=0的解為0,1,
令f(x)=1得x=-1,或x=2,
∴f(f(x))的零點(diǎn)之和為0+1+(-1)+2=2.
故選:C.

點(diǎn)評(píng) 本題考查了函數(shù)零點(diǎn)的計(jì)算,分段函數(shù)函數(shù)值的計(jì)算,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.某單位共有老、中、青職工430人,其中青年職工160人,中年職工人數(shù)是老年職工人數(shù)的2倍,為了解職工身體狀況,現(xiàn)采用分層抽樣方法進(jìn)行調(diào)查,在抽取的樣本中,中年職工抽到36人,則該樣本中的青年職工抽取到的人數(shù)為32.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{x-2y-6≤0}\\{2x+y≥0}\\{y≤2}\end{array}\right.$,則$\frac{y+4}{x-7}$的取值范圍為(-∞,$-\frac{8}{29}$]∪[2,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.口袋中有6個(gè)大小相同的小球,其中1個(gè)小球標(biāo)有數(shù)字“3”,2個(gè)小球標(biāo)有數(shù)字“2”,3個(gè)小球標(biāo)有數(shù)字“1”,每次從中任取一個(gè)小球,取后放回,連續(xù)抽取兩次.
(I)求兩次取出的小球所標(biāo)數(shù)字不同的概率;
(II)記兩次取出的小球所標(biāo)數(shù)字之和為ξ,求ξ的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.某省組織了一次高考模擬考試,該省教育部門抽取了1000名考生的數(shù)學(xué)考試成績(jī),并繪制成頻率分布直方圖如圖所示.
(Ⅰ)求樣本中數(shù)學(xué)成績(jī)?cè)?5分以上(含95分)的學(xué)生人數(shù);
(Ⅱ)已知本次模擬考試全省考生的數(shù)學(xué)成績(jī)X~N(μ,σ2),其中μ近似為樣本的平均數(shù),σ2近似為樣本方差,試估計(jì)該省的所有考生中數(shù)學(xué)成績(jī)介于100~138.2分的概率;
(Ⅲ)以頻率估計(jì)概率,若從該省所有考生中隨機(jī)抽取4人,記這4人中成績(jī)?cè)赱105,125)內(nèi)的人數(shù)為X,求X的分布列及數(shù)學(xué)期望.
參考數(shù)據(jù):$\sqrt{356}$≈18.9,$\sqrt{366}$≈19.1,$\sqrt{376}$≈19.4.
若Z∽N(μ,σ2),則P(μ-σ<Z<μ+σ)=0.9826,P(μ-2σ<Z<μ+2σ)=0.9544,P(μ-3σ<Z<μ+3σ)=0.9976.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知點(diǎn)P(3,-4)是雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$漸近線上的一點(diǎn),E,F(xiàn)是左,右兩個(gè)焦點(diǎn),若$\overrightarrow{EP}•\overrightarrow{FP}=0$,則雙曲線方程為( 。
A.$\frac{x^2}{18}-\frac{y^2}{32}=1$B.$\frac{x^2}{32}-\frac{y^2}{18}=1$C.$\frac{x^2}{9}-\frac{y^2}{16}=1$D.$\frac{x^2}{16}-\frac{y^2}{9}=1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{|x-y|≤1}\\{|x+y|≤3}\end{array}\right.$,則|3x+y|的最大值為( 。
A.5B.6C.7D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.下列函數(shù)中滿足在(-∞,0)上單調(diào)遞減的偶函數(shù)是( 。
A.$y={({\frac{1}{2}})^{|x|}}$B.y=|log2(-x)|C.$y={x^{\frac{2}{3}}}$D.y=sin|x|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知函數(shù)f(x)=$\left\{\begin{array}{l}{(\frac{1}{2})^{x}-1,x≤0}\\{2{x}^{2}-lnx,x>0}\end{array}\right.$,若函數(shù)y=f(x)-a恰有一個(gè)零點(diǎn),則a的取值范圍是[0,$\frac{1}{2}$-ln$\frac{1}{2}$).

查看答案和解析>>

同步練習(xí)冊(cè)答案