三棱錐的高為,若三個側面兩兩垂直,則為△的(  )
A.內(nèi)心B.外心C.垂心D.重心
C
解:如圖所示,

三個側面兩兩垂直,可看成正方體的一角,則AP⊥面PBC,
而BC?平面PBC∴AP⊥BC而PH⊥面ABC,BC?面ABC
∴PH⊥BC,又AP∩PH=P,
∴BC⊥面APH,而AH?面APH
∴AH⊥BC,同理可得CH⊥AB
故H為△ABC的垂心
故選:C
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分15分) 如圖,已知正方形和矩形所在的平面互相垂直,,,是線段的中點.

(Ⅰ)求證://平面;
(Ⅱ)求二面角的大。
(Ⅲ)試在線段上確定一點,使得所成的角是.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

,則點與直線的位置關系用符號表示為            ;

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

如圖,已知二面角α-l-β為120°,AB,CD,AB⊥于A,CD⊥于D ,且AB=AD=CD=1,則BC=(     )
A.B.C.1D.2

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

下列命題中:
(1)、平行于同一直線的兩個平面平行;(2)、平行于同一平面的兩個平面平行;
(3)、垂直于同一直線的兩直線平行;(4)、垂直于同一平面的兩直線平行;
.其中正確的個數(shù)有(   )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分10分)
如圖:是⊙的直徑,垂直于⊙所在的平面,是圓周上不同于的任意一點,
(1)求證:平面.
(2)圖中有幾個直角三角形.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

、為兩條不重合的直線,為兩個不重合的平面,則下列命題中,真命題的個數(shù)是(   )
①若直線、都平行于平面,則、一定不是相交直線
②若直線、都垂直于平面,則、一定是平行直線
③已知平面、互相垂直,且直線、也互相垂直,若,則
④直線在平面內(nèi)的射影互相垂直,則
A.1B.2
C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如圖,直線l⊥平面,垂足為O,已知在直角三角形ABC中, BC=1,AC=2,AB=該直角三角形在空間做符合以下條件的自由運動:(1),(2).則B、O兩點間的最大距離為           

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

((本題滿分14分)已知,如圖四棱錐PABCD中,底面ABCD是平行四邊形,PG⊥平面ABCD,垂足為G,GAD上,且AG=GD,BGGCGB=GC=2,EBC的中點,四面體PBCG的體積為.(Ⅰ)求異面直線GEPC所成角的余弦;(Ⅱ)求點D到平面PBG的距離;(Ⅲ)若F點是棱PC上一點,且DFGC,求的值.

查看答案和解析>>

同步練習冊答案