已知向量
.
m
=(1,1)
,
.
n
=(1,a)
,其中a為實數(shù),當
.
m
.
n
的夾角在區(qū)間(0,
π
12
)
范圍內變動時,實數(shù)a的取值范圍是(  )
A、(0,1)
B、(
3
3
3
C、(
3
3
,1)∪(1,
3
)
D、(1,
3
)
分析:利用向量夾角的范圍求出向量夾角余弦的范圍,利用向量的數(shù)量積求出向量夾角的余弦,列出方程解得.
解答:解:設兩個向量的夾角為θ
θ∈(0,
π
12
)

cos
π
12
<cosθ <1

cos
π
12
=cos(
π
4
-
π
6
)
=cos
π
4
cos
π
6
+sin
π
4
sin
π
6
=
6
+
2
4

∵cosθ=
m
n
|
m
||
n
|
=
1+a
2
1+a2

6
+
2
4
< 
1+a
2
1+a2
<1

解得
3
3
<a<1
1<a<
3

故選C.
點評:本題考查利用向量的數(shù)量積求出向量夾角的余弦值.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知向量
m
=(1,1)
,向量
n
與向量
m
夾角為
3
4
π
,且
m
n
=-1
,又A、B、C為△ABC的三個內角,且B=
π
3
,A≤B≤C.
(Ⅰ)求向量
n
;
(Ⅱ)若向量
n
與向量
q
=(1,0)
的夾角為
π
2
,向量
p
=(cosA,2cos2
C
2
)
,試求|
n
+
p
|
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
m
=(-1,sinx)
,
n
=(-2,cosx)
,函數(shù)f(x)=2
m
n

(1)求函數(shù)f(x)在區(qū)間[0,
π
2
]
上的最大值;
(2)若△ABC的角A、B所對的邊分別為a、b,f(
A
2
)=
24
5
f(
B
2
+
π
4
)=
64
13
,a+b=11,求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
m
=(λ+1,1),
n
=(λ+2,2)
,若(
m
+
n
)⊥(
m
-
n
)
⊥(
m
-
n
)
,則λ=
-3
-3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
m
=(1,cosωx),
n
=(sinωx,
3
)
(ω>0),函數(shù)f(x)=
m
n
,且f(x)圖象上一個最高點為P(
π
12
,2)
,與P最近的一個最低點的坐標為(
12
,-2)

(1)求函數(shù)f(x)的解析式;
(2)設a為常數(shù),判斷方程f(x)=a在區(qū)間[0,
π
2
]
上的解的個數(shù);
(3)在銳角△ABC中,若cos(
π
3
-B)=1
,求f(A)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
m
=(-1,
3
),
n
=(cosx,sinx),f(x)=
m
n

(1)求f(x)的表達式及最小正周期;
(2)若sinθ=
4
5
,0<θ<
π
2
,求f(θ)的值.

查看答案和解析>>

同步練習冊答案