在數(shù)列{an}中,a1=2,3(a1+a2+…+an)=(n+2)an,n∈N*,則an=    .
n(n+1)
由已知可得3Sn=(n+2)an,當n≥2時,
3(Sn-Sn-1)=(n+2)an-(n+1)an-1=3an,
=.
∵a1···…··=2×××××…××=n(n+1),
∴an=n(n+1).
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

設數(shù)列{an}的各項都為正數(shù),其前n項和為Sn,已知對任意n∈N*,Snaan的等差中項.
(1)證明數(shù)列{an}為等差數(shù)列,并求數(shù)列{an}的通項公式;
(2)證明<2.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知數(shù)列{an}滿足a1+a2+…+an=n2(n∈N*).
(1)求數(shù)列{an}的通項公式;
(2)對任意給定的k∈N*,是否存在p,r∈N*(k<p<r)使,成等差數(shù)列?若存在,用k分別表示p和r(只要寫出一組);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知在等差數(shù)列{an}中,a1=31,Sn是它的前n項和,S10=S22.
(1)求Sn;
(2)這個數(shù)列的前多少項的和最大,并求出這個最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知數(shù)列{an}的前n項和為Sn,滿足log2(1+Sn)=n+1,則{an}的通項公式為__________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

設正項等差數(shù)列{an}的前2011項和等于2011,則的最小值為________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

等差數(shù)列{an}中,a7=4,a19=2a9.
(1)求{an}的通項公式;
(2)設bn=,求數(shù)列{bn}的前n項和Sn.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

若數(shù)列{n(n+4) n}中的最大項是第k項,則k=    .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若數(shù)列{an}滿足:存在正整數(shù)T,對于任意正整數(shù)n都有anTan成立,則稱數(shù)列{an}為周期數(shù)列,周期為T.已知數(shù)列{an}滿足a1m(m>0),an+1則下列結論中錯誤的是(  )
A.若m,則a5=3
B.若a3=2,則m可以取3個不同的值
C.若m,則數(shù)列{an}是周期為3的數(shù)列
D.?m∈Q且m≥2,使得數(shù)列{an}是周期數(shù)列

查看答案和解析>>

同步練習冊答案