設(shè)函數(shù)f(x)=|x-1|+|x-a|,
(1)若a=-1,解不等式f(x)≥3;
(2)如果x∈R,f(x)≥2,求a的取值范圍.
【答案】
分析:(1)當a=-1,原不等式變?yōu)椋簗x-1|+|x+1|≥3,下面利用對值幾何意義求解,利用數(shù)軸上表示實數(shù)-
左側(cè)的點與表示實數(shù)
右側(cè)的點與表示實數(shù)-1與1的點距離之和不小3,從而得到不等式解集.
(2)欲求當x∈R,f(x)≥2,a的取值范圍,先對a進行分類討論:a=1;a<1;a>1.對后兩種情形,只須求出f(x)的最小值,最后“x∈R,f(x)≥2”的充要條件是|a-1|≥2即可求得結(jié)果.
解答:解:(1)當a=-1時,f(x)=|x-1|+|x+1|,由f(x)≥3有|x-1|+|x+1|≥3
據(jù)絕對值幾何意義求解,|x-1|+|x+1|≥3幾何意義,是數(shù)軸上表示實數(shù)x的點距離實數(shù)1,-1表示的點距離之和不小3,
由于數(shù)軸上數(shù)-
左側(cè)的點與數(shù)
右側(cè)的點與數(shù)-1與1的距離之和不小3,
所以所求不等式解集為(-∞,-
]∪[
,+∞)
(2)由絕對值的幾何意義知,數(shù)軸上到1的距離與到a的距離之和大于等于2恒成立,則1與a之間的距離必大于等于2,從而有a∈(-∞,-1]∪[3,+∞)
點評:本小題主要考查絕對值不等式、不等式的解法、充要條件等基礎(chǔ)知識,考查運算求解能力,考查數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想、分類討論思想.