已知
a
=(sinx+cosx,sinx-cosx),
b
=(sinx,cosx)
(1)若
a
b
,求x的值;
(2)當(dāng)x∈(-
π
6
,
π
4
)
時(shí),求函數(shù)f(x)=
a
b
的值域.
(1)∵
a
b
,
a
=(sinx+cosx,sinx-cosx),
b
=(sinx,cosx)
∴cosx(sinx+cosx)=sinx(sinx-cosx),
整理得sin2x+cos2x=0,
∴tan2x=-1,,
∴2x=kπ-
π
4
,k∈z,即x=
1
2
kπ-
π
8
,k∈z,
(2)f(x)=
a
b
=sinx(sinx+cosx)+cosx(sinx-cosx)=2sinxcosx+sin2x-cos2x=sin2x-cos2x=
2
sin(2x-
π
4

∵x∈(-
π
6
,
π
4
)
,∴2x-
π
4
∈(-
12
π
4

∴-1≤sin(2x-
π
4
)<
2
2
,得-
2
≤f(x)<1
,即函數(shù)f(x)=
a
b
的值域是[-
2
,1)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知
a
=(cosx+sinx,sinx),
b
=(cosx-sinx,2cosx)
,設(shè)f(x)=
a
b

(1)求函數(shù)f(x)的最小正周期,并寫出f(x)的減區(qū)間;
(2)當(dāng)x∈[0,
π
2
]
時(shí),求函數(shù)f(x)的最大值及最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知
a
=(sinx+2cosx,3cosx),
b
=(sinx,cosx),且f(x)=
a
b

(1)求函數(shù)f(x)的最大值;
(2)求函數(shù)f(x)在[0,π]上的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知
a
=(sinx,
3
4
),
b
=(cos(x+
π
3
),1)函數(shù)f(x)=
a
b

(1)求f(x)的最值和單調(diào)遞減區(qū)間;
(2)已知在△ABC中,角A、B、C的對(duì)邊分別為a,b,c,f(A)=0,a=
3
,求△ABC的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知
a
=(sinx,cosx+1),
b
=(cosx,cosx-1),f(x)=
a
b
(x∈R)
(1)求函數(shù)f(x)的最小正周期和單調(diào)區(qū)間;
(2)若x∈[-
π
6
,
π
2
]
,求函數(shù)f(x)的最值及相應(yīng)的x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•成都一模)已知
a
=(cosx+sinx, sinx), 
b
=(cosx-sinx, 2cosx)
,設(shè)f(x)=
a
b

(Ⅰ)求函數(shù)f(x)的最小正周期;
(Ⅱ)當(dāng)x∈[-
π
4
,
π
4
]
時(shí),求函數(shù)f(x)的最大值及最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案