【答案】
分析:(I)函數f(x)的定義域為(0,+∞),求導函數,令f′(x)>0,分類討論可得函數的單調區(qū)間;
(Ⅱ)(i)構造函數F(x)=f(1+x)+f(1-x)=2ln(1+x)+2ln(1-x)+2x
2,求導函數,確定F(x)在(0,1)上為減函數,從而可求實數m的取值范圍;
(ii)由f(x
1)+f(x
2)=0,可得(x
1+x
2)
2=2x
1x
2-2lnx
1x
2+2設t=x
1x
2,則t>0,g(t)=2t-2lnt+2,求出g(t)
min,即可證得結論.
解答:(I)解:函數f(x)的定義域為(0,+∞),f′(x)=
令f′(x)>0,∵x>0,∴2ax
2+2>0
①當a≥0時,f′(x)>0在(0,+∞)上恒成立,∴f(x)遞增區(qū)間是(0,+∞);
②當a<0時,由2ax
2+2>0可得
<x<
x>0,∴f(x)遞增區(qū)間是(0,
),遞減區(qū)間為
;
(Ⅱ)(i)解:設F(x)=f(1+x)+f(1-x)=2ln(1+x)+2ln(1-x)+2x
2,則F′(x)=
∵0<x<l,∴F′(x)<0在(0,1)上恒成立,∴F(x)在(0,1)上為減函數
∴F(x)<F(0)=0,∴m≥0,∴實數m的取值范圍為[0,+∞);
(ii)證明:∵f(x
1)+f(x
2)=0,
∴21nx
1+x
12-1+21nx
2+x
22-1=0
∴2lnx
1x
2+(x
1+x
2)
2-2x
1x
2-2=0
∴(x
1+x
2)
2=2x
1x
2-2lnx
1x
2+2
設t=x
1x
2,則t>0,g(t)=2t-2lnt+2,∴g′(t)=
令g′(t)>0,得t>1,∴g(t)在(0,1)上單調遞減,在(1,+∞)上單調遞增
∴g(t)
min=g(1)=4,∴(x
1+x
2)
2>4,∴x
1+x
2>2.
點評:本題考查導數知識的運用,考查函數的單調性,考查函數的最值,解題的關鍵是構造函數,正確運用導數.